"KREIT"

Calculating and Measuring Transducers TEKON-19 (02M – 06M, 10M, 11, 15, 15M versions)

Operating Manual

Т10.00.60 РЭ

Ekaterinburg

2018

TABLE OF CONTENTS

SPECIAL OPERATION GUIDELINES	
1 SAFETY REQUIREMENTS	5
2 DESCRIPTION AND OPERATION OF THE TRANSDUCER	
2.1 PURPOSE OF THE DEVICE	
2.2 FEATURES	6
2.3 TRANSDUCER DESIGN AND OPERATION	
2.3.1 Parameter system and software	
2.3.2 Measurement of analog signals	
2.3.3 Measurement of frequency and number of pulses	
2.3.4 Principles of accumulation (integration) of information	
2.3.5 Time service	
2.3.6 List of TEKON-19 loadable algorithms	
2.3.7 Features of serial exchange interfaces	
2.3.8 TEKON-19 self-monitoring, event log and intervention log	
2.3.9 Information updating	
2.3.10 Protection of information against unauthorized access	
2.3.11. Operating modes	
2.4 SCOPE OF SUPPLY	
2.5 PACKAGE	
2.6 MARKING AND SEALING	
3 INSTALLATION	
3.1 CONNECTION	
3.2 TASKS LOADING AND CONFIGURATION OF THE TEKON-19 PARAMETERS	
4 USE OF THE TRANSDUCER	
4.1 READING PARAMETERS VIA CAN BUS	
4.2 READING INFORMATION FROM THE FRONT PANEL INDICATOR	
5 TECHNICAL SERVICE	
5.1 MAINTENANCE AND PERIODIC VERIFICATION	
5.2 REPAIR	
6 VERIFICATION	
7 TRANSPORTATION AND STORAGE	75
8 DISPOSAL	75
ANNEX A - List of regulatory and technical documents referenced in the	
Operation Manual	
ANNEX B – Lists of the TEKON-19 parameters and algorithms	
ANNEX C (reference) - Binary and hexadecimal codes	
ANNEX D (reference) - Calculation errors	103 10 <i>5</i>
ANNEX E (reference) – Flow calculation algorithms	105

This Manual covers the TEKON-19 calculating and measuring transducers of **02M - 06M, 10M, 15M, 11, and 15 versions**, and the 'Verification' section is applied to **all versions and modifications** (hereinafter referred to as the 'TEKON-19' or the transducers).

This Manual (except for 'Verification' section) is not applicable to the TEKON-19 with software version below 95.03.

The operational documentation for the TEKON-19 consists of this Operating Manual, including the verification procedure and Certificate T10.00.60 Π C.

In terms of stability and resistance to the impact of environmental conditions and mechanical loads, the TEKON-19 corresponds to the C3, P1, V1 versions according to GOST R 52931 (for the 'T' option and 15 - C2, P1, V1 versions).

Number in the National Register of Measuring Equipment of the Russian Federation: <u>61953-15.</u>

Certificate of compliance to Oil and Gas Industry Safety Regulations <u>No. C-</u> <u>EPB.001.TU.00553</u> for operation at hazardous production facilities regulated by Federal Service for Environmental, Technological and Nuclear Supervision.

Customs Union (CU) Declaration <u>No. RU D-RU.A301.B.01004</u> of compliance with the requirements of TR CU 020/2011 "Electromagnetic compatibility of technical means".

The TEKON-19 complies with the "Rules for the fiscal metering of heat energy and heat carrier" introduced by the Decree of the Government of the Russian Federation No. 1034 of 18/11/2013.

-	•	
ADC	АЦП	analog-to-digital converter
DB	БД	data base
МТ	ИП	measuring transducer
MC	ИК	measuring channel
MS	ИС	measuring system
CS	КС	control sum;
SW	ПО	software;
РС	ПК	personal computer IBM/PC;
MI	СИ	measuring instrument;
RTC	TCM	copper resistance thermotransducer;
RTP	ТСП	platinum resistance thermotransducer;
G	-	consumption of the medium (energy);
R ₀	-	resistance value of RTC and RTP at a temperature of 0°C;
W100	-	ratio of the resistance of RTC and RTP at 100°C to the resistance at 0°C;
Р	-	pressure in the pipeline;
Q	-	heat energy;
t	-	temperature in the pipeline;
τ	-	time.
KREIT	КРЕЙТ	
TEKON-19	ТЭКОН-19	

SPECIAL OPERATION GUIDELINES

• The main digital CAN-BUS interface is used in order to address the TEKON-19 parameters during operation. It is an internal bus of measuring complexes based on the TEKON-19 controllers. The CAN-BUS interface is <u>NOT ALLOWED</u> to be used for direct connection of non-complex equipment; the connection to the PC should be performed **only** through the appropriate adapters manufactured by the manufacturer and the data communication equipment of data link channels.

The software that supports controller exchange protocols, for example, the Teleport technological program, software complex ISKRA, etc., supplied by the manufacturer, shall be used for operation.

• RS-232 TTL Interface is an **Optional (technological) interface.** <u>IT IS</u> <u>PROHIBITED</u> to use the technological interface to create dispatching systems, it is intended **only for connecting the technological data communication equipment of the manufacturer** RI-97 and RI-197 data recorders, RS-232 T20 T10.00.92 USB adapter)

• Digital filters on the pulsed measuring channels (MC) are designed to filter out high-frequency interference, for example, the contacts bounce of the measuring transducer (MT).

The digital filters of the corresponding MC for MT with a maximum pulse repetition rate **exceeding 100 Hz** <u>shall be switched off.</u>

The digital filters of the corresponding MC for MT with a maximum pulse repetition rate **below 100 Hz** <u>shall be switched on.</u>

• Zero values shall be assigned to all accumulated parameters when commissioning. This procedure is performed by recording "1" in the parameter 0302 "XRAM information clearance". After this procedure, the value of the parameter 0302 is reset automatically. The fact of "clearance" is recorded in the system log.

• <u>IT IS PROHIBITED</u> to switch off the power supply of the transducer during entering parameters into the TEKON-19 through any digital interface. It can lead to transducer failure, and repair by the manufacturer may become necessary in order to resolve this issue.

• It may be necessary to replace the stationary backup battery after long-term storage or service with a power outage of a total duration exceeding 10 months.

• The TEKON-19 repair is performed by the manufacturer or authorized service centers.

The preservation of settings and accumulated information in the device <u>memory is</u> <u>not guaranteed</u> in case of repair. It is necessary to carry out pre-commissioning activities before commissioning after the repair.

1 SAFETY REQUIREMENTS

1.1 The TEKON-19 provides protection of personnel against electric shock according to class III of GOST 12.2.007.0.

1.2 Only persons with at least secondary technical education, trained in electrical safety for operation with units under voltage of up to 1,000 V and familiarized with this Operating Manual are allowed to work with the TEKON-19 transducer.

1.3 It must be communicated to the responsible authority that the protection provided by the transducer may be ineffective if it is operated in a manner not specified by the manufacturer.

2 DESCRIPTION AND OPERATION OF THE TRANSDUCER

2.1 Purpose of the device

The TEKON-19 transducers are designed to measure the signals of primary measuring transducers (MT) and convert them into the corresponding physical values measured by the MT, with subsequent calculation of the flow rate, volume and mass of liquids, including water, oil and petroleum products, gases and gas mixtures, including the amount of water vapour, gas distillate and wet petroleum gas, oxygen, carbon dioxide, nitrogen, argon, hydrogen, acetylene, ammonia, bringing it to standard conditions, thermal energy, electricity, accumulation, averaging and archiving measured and calculated parameters at predetermined time intervals.

The field of application includes measuring systems of fiscal metering and automated and processes control at industrial enterprises, heat substations, heat stations, power plants, gas distribution stations, oil and gas producing enterprises, municipal enterprises and the refrigerating industry.

2.2 Features

2.2.1 The TEKON-19 versions

2.2.1.1 TEKON-19 with application as per cl. 2.1 is available in 9 versions - (02M - 06M), 10M, 11, 15, 15M, differing by sets of measuring channels (MC) and digital interfaces, availability of control and indication elements, as well as by sets of functions included in the software in accordance with tables 2.1 to 2.3.

Each version of the TEKON-19, except for version 15, is available in two versions - the basic version and the 'T' version differing by the range of ambient temperature within operating conditions. Version 15 is available only in an extended ambient temperature range.

2.2.1.2 The front panel appearance is shown in Figure 2.1. Terminals numbering is from left to right, firstly in the bottom row and then in the top row.

Parameter description		Parameter values (parameter availability) for								
-		versions								
	02M	03M	04M	05M	06M	10M	11	15	15M	
Body standard size, mm	70	70	70	70	105	105	70	70	70	
Number of resistance MC	1	3		2	4	4	_		_	
Number of current rate MC, pcs.	3	_		2	3	_	4		_	
Number of frequency MC and	4	3	8	3	4	7	_			
number of pulses MC, pcs.		5	0	7	•	,				
HART, RS-485 interfaces	—	_	-	-	_	—	—	+	+	
Clock, keyboard, display,	+	+	+	+	+	+		+	+	
technological interface	'	'			, i	1				
Figure 2.1 option	а	a	а	а	c	c	b	а	a	

Table 2.1 – The TEKON-19 versions

2.2.2 The TEKON-19 software

2.2.2.1 The TEKON-19 uses embedded software. The software is divided into the metrologically significant part and the metrologically insignificant part. The identification data of the metrologically significant part of the software used in the TEKON-19 is specified in table 2.2.

Access required to change the parameters and configuration of the TEKON-19 is protected by passwords, which are 8-bit hexadecimal integers.

The TEKON-19 software protection level against unintended and deliberate modifications is "high" as per Recommendations P 50.2.077-2014.

The TEKON-19 software corresponds to the GOST R 8.654-2009 requirements.

2.2.2.2 The TEKON-19 software includes a set of algorithms to perform basic functions and various calculation, archive and other loadable user tasks depending on the version. An overview of the basic and loadable algorithms is specified in Table 2.3. A detailed list of algorithms is specified in Table B.2 of Annex B. The total number of loadable tasks is up to 256.

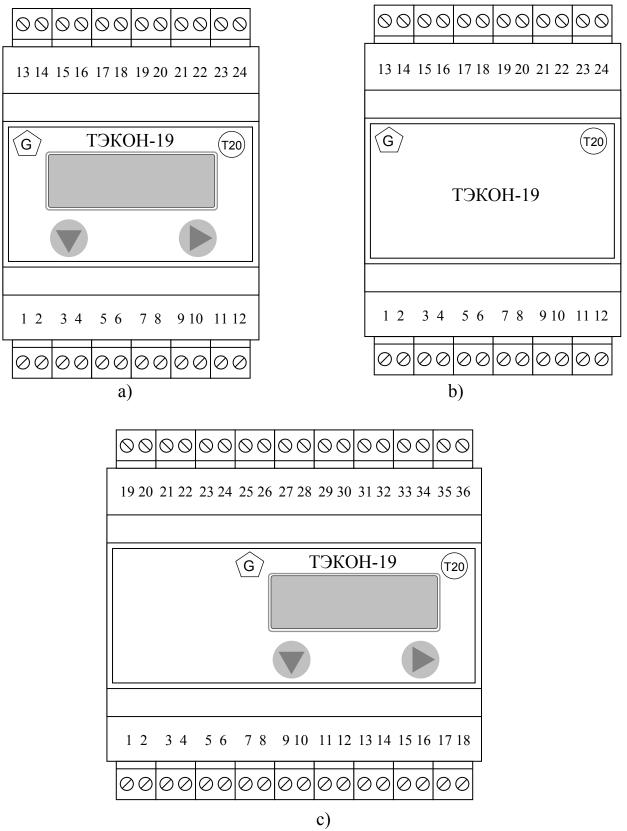


Figure 2.1 – The TEKON-19 front panel view and terminals numbering for various versions:

a) – body 70, b) – body 70 without indication, c) – body 105.

Identification details (characteristics)		Value						
Software Identification Name	TEKON19-M T10.06.245	TEKON19-M1 T10.06.292	TEKON19-M1 T10.06.292-04					
Software version number (identification number)	xx.04	xx.03	04.xx	05.xx				
Software digital identifier	39A1B57A	8BF2C4A6	6CFB18A0	CF5A88D2				
Algorithm for software digital identifier calculation	CRC32	CRC32	CRC32	CRC32				

Table 2.2 – Software identification details

Table 2.2 continuation

Identification details (characteristics)		Value						
Software Identification Name	TEKON19-M2 T10.06.362-05	TEKON19-11 T10.06.170	TEKON19-15 T10.06.319	TEKON19-15 T10.06.319-05				
Software version number (identification number)	05.xx	xx.03	03.xx	05.xx				
Software digital identifier	4DA5342F	7AC358D4	BDD26C10	2C48153D				
Algorithm for software digital identifier calculation	CRC32	CRC32	CRC32	CRC32				

(Revision, Amendment No. 3).

Table 2.3 – The TEKON-19 main tasks

Name	Qty
Basic tasks	
System functions, time, date and status indication on the screen	1
Time measurement, calendaring	1
Resistance and current measurement on analog MC	up to 7^{1}
Frequency and number of pulses measurement on impulse-number MC	up to 8^{1}
Recording of the current condition of impulse-number MC	up to 8^{1}
Receiving data from primary MTs directly via the HART interface	up to 16^{1}
channel	
Receiving data from primary MT with digital interface outputs (HART,	up to 16^{1}
Modbus, etc.) via the Can Bus interface and the corresponding interface	
adapters manufactured by the manufacturer	
Receiving data from primary MT via the HART interface channel	up to 16^{1}
Information exchange through the Can Bus, RS-485 interface channels,	up to 3^{1}
and technological exchange	up to 5
Display and correction of the required parameters via the screen menu	up to 200
Viewing archived parameters via the screen menu	up to 56
Viewing parameters in the screen cyclic menu	up to 10
TEKON-19 self-monitoring, event and intervention logging	1

P. 8

Table 2.3 continued

Name	Qty
Set of functions for loadable tasks (in all versions except for 11)	
Calculation of temperature based on temperature resistance measured by	up to 256
MT ²)	
Calculation of physical values based on MT measured current (pressure,	up to 256
differential pressure, flow, etc.) ²⁾	
Calculation of the medium flow rate in MT measurement units based on	up to 256
MT frequency ²)	
Calculation and accumulation of flow rate, volume and mass of fluids ²⁾ ,	
gases and gas mixtures according to table 3:	
- using an orifice plate according to GOST 8.586.5-2005	up to 8
- using an ISA 1932 nozzle according to GOST 8.586.5-2005 ²⁾	up to 8
- using TORBAR averaging pitot tubes according to Procedure MI 3173	up to 8
- using ANNUBAR 485 flow averaging tubes according to Procedure MI	up to 8
2667-2011	up to 8
- by the calculated volumetric flow rate, temperature and pressure ²)	up to 8
- by the number of pulses from the MT, calculated temperature, pressure ²)	
Calculation of heat energy in a closed or open heat supply system, or in a	-
separate heating pipeline based on calculated values of mass, temperature	
and pressure in accordance with MI 2412-97, MI 2451-98 and the 'Rules	
of fiscal metering of heat energy and heat carrier', approved by the Decree	
of the Government of the Russian Federation No.1034 of 18.11.2013 ²⁾	
Accumulation of electric energy based on the number of pulses from the	up to 8
electricity meter with impulse-number output ²)	
Performing of arithmetic, algebraic and logical operations with the	up to 256
parameters	
Parameter conversion using piecewise linear interpolation method	up to 2
Accumulation of cumulative values of the parameter by intervals, hours,	up to 256
days, months	
Calculation of parameters average values by intervals, hours, days, months	up to 256
Calculation of weighted-average flow and temperature values by intervals,	up to 256
hours, days, months	
Archiving of parameters by intervals from 1 to 30 minutes, archive depth	up to 256
is from 1 day to 3 months (1,440 values)	
Archiving of parameters by hours, archive depth is 16, 32 or 64 days	up to 256
Archiving of parameters by days, archive depth is 1 year	up to 256
Archiving of parameters by month, archive depth is 1 or 4 years	up to 256
Calculation of parameters extreme values by intervals	up to 256
Assessment of the MT condition and overrunning of controlled parameters	up to 256
over the technological settings	
Parameter input via CAN BUS interface from other modules	up to 128
Time tracking of serviceable and malfunctioning operation	up to 256

Telesignalization

up to 8

Note: 1) By the number of channels in the version

2) Only for versions (02M – 06M), 10M, 15M

2.2.2.3 The TEKON-19 performs calculations using the following methods:

• flow rate, volume and mass of gases and gas mixtures, including natural and wet petroleum gas, oxygen, carbon dioxide, nitrogen, argon, hydrogen, acetylene, ammonia based on the MT measured signals of flow rate, pressure, temperature and density data under standard conditions calculated or obtained via digital information channel, atmospheric pressure and gas composition converted to standard conditions according to GOST R 8.740-2011, GOST 8.611- 2013, MI 3213-2009, GOST 30319.1-3-2015, Reference data GSSSD MR 113-03, GSSSD MP 118-05, GSSSD MP 134-07

• flow rate, volume and mass of fluids, including water according to MI 2412-97, petroleum and petroleum products in accordance with R 50.2.076-2010, using MT measured signals or flow rate, pressure and temperature data obtained via digital information channel.

• flow rate, volume and mass of fluid, gases and gas mixtures using diaphragms and an ISA 1932 nozzle in accordance with GOST 8.586.5-2005 using MT measured signals or pressure, differential pressure on the diaphragm (nozzle) and temperature data obtained via digital information channel.

• flow rate, volume and mass of liquids, gases and gas mixtures using TORBAR and ANNUBAR 485 averaging pitot tubes in accordance with MI 3173-2008, MI 2667-2011 using the MT measured signals or pressure, differential pressure and temperature data obtained via digital channel;

• flow rate, volume and mass of water vapour based on the MT measured signals or flow rate, pressure and temperature data obtained via digital information channel with the ability to calculate pressure based on measured temperature and temperature based on measured pressure on the saturation curve.

• thermal energy produced or consumed in an element of a heating supply or cooling system based on results of mass, temperature and pressure determination in accordance with GOST R 51649-2014, GOST R EN 1434-1-2011, GOST R 8.728-2010, MI 2412-97, MI 2451-98 and the 'Rules of Fiscal Metering of Heat Energy and Heat Carrier', approved by the Decree of the Government of the Russian Federation No. 1034 of 18.11.2013.

• electric energy in case of application of two-rate metering separately for each rate interval. (*Revision, Amendment No. 3*).

2.2.2.4 Calculation of the volumetric flow rate of all types of gases carried out by bringing its value to standard conditions in accordance with GOST 2939-63 (temperature: 20° C, atmospheric pressure: 760 mm Hg).

2.2.3 Metrological and technical features of the TEKON-19 are represented in table 2.4.

Value
± 0.04
± 0.2
± 2
± 0.005
± 0.02
± 0.2
±1
± 0.002
± 0.004
0 0001
- 0.0001
±9
± 0.005
± 0.003
± 0.05
± 0.005
± 0.1
± 0.1
± 0.1
± 0.03
± 0.05
± 0.15
: 0.0001
2 0.0001
- 0.0001
SUP) and

2.2.4 The total error of the TEKON-19 when measuring temperature, pressure, differential pressure, flow rate, volume, and other physical values measured by primary MT connected to the MC of the transducer are calculated using the following formulas:

$$\Delta(\mathbf{t}_{\rm rc}) = \pm \sqrt{\left(\frac{\Delta(R)}{A \cdot R_0}\right)^2 + \left(\frac{\gamma_{\Pi}(t) \cdot \left(t_{\rm max} - t_{\rm min}\right)}{100}\right)^2}, \qquad (2.1)$$

where $\Delta(t_{rc})$ – permissible absolute error limits of the TEKON-19 when measuring temperature (RT), °C,

 $\Delta(\mathbf{R})$ – limit of permissible absolute error of resistance measurement according to table 2.4, Ohm,

 \mathbf{R}_0 – resistance of temperature MT at 0°C, Ohm,

A – equation coefficient in accordance with GOST 6651, equal, for example, to $0.0039692^{\circ}C^{-1}$ for RTP with W₁₀₀=1.391 and $0.00428^{\circ}C^{-1}$ for RTC with W₁₀₀=1.428,

 $\gamma_{\Pi}(t)$ – limit of permissible conventional error of temperature measurement according to table 2.4, %.

 T_{max} , t_{min} – upper and lower limits of the temperature measurement according to table 2.4, °C.

$$\gamma(P) = \pm \sqrt{\left(\frac{\Delta(J)}{J_{\max} - J_{\min}} \cdot 100\right)^2 + \gamma_{\Pi}(J \to P)^2}, \qquad (2.2)$$

where $\gamma(\mathbf{P})$ – limits of permissible conventional error of the TEKON-19 when measuring pressure, differential pressure and other physical values measured with primary MT with current output signal, %,

 $J_{min}\,$, J_{max} – values of an MT output signal at minimum and maximum value of the measured value, accordingly, mA,

 $\Delta(J)$ – limit of permissible absolute error of current measurement within the range corresponding to the range of the MT signal, according to table 2.4, mA,

 $\gamma_{\Pi}(J \rightarrow P)$ – limit of permissible conventional error for calculation of pressure, differential pressure and other physical values measured with MT with unified linear current output signals based on the MT measured current rate value according to table 2.4, %.

$$\delta(G) = \pm \sqrt{\left(\frac{\Delta(F) \cdot \tau_{_{\mathcal{MH}}}}{F_{\min} \cdot \tau_{_{ycp}}} \cdot 100\right)^2 + \delta_{\Pi}(X)^2}, \qquad (2.3)$$

where $\delta(G)$ – limits of the permissible conventional error of the TEKON-19 when measuring the flow rate with flow meter with a frequency output, %,

 $\Delta(F)$ – limit of the permissible absolute error for frequency measurement according to table 2.4, Hz,

 \mathbf{F}_{\min} – frequency value at minimum estimated flow rate value, Hz,

 τ_{MTH} – measurement time for instantaneous frequency determination (8 s),

T10.00.60 P3 Rev. 05.07 of 27.03.18

 τ_{ycp} – estimated period of flow value averaging (5 minutes, hours, day, month, year), s, $\delta_{II}(X)$ – limit of the permissible relative error when performing arithmetic operation with the parameters in accordance with table 2.4, %.

$$\delta(V) = \pm \sqrt{\left(\frac{\Delta(N) \cdot V_{umn}}{G_{\min} \cdot \tau_{u_{3M}}} \cdot 100\right)^2 + \delta_{\Pi}(X)^2}, \qquad (2.4)$$

where $\delta(V)$ – limits of the permissible relative error of the TEKON-19 when measuring the volume (mass) with a flow meter with an impulse-number output, %,

 $\Delta(N)$ – limit of the permissible absolute error for measuring the number of pulses according to table 2.4, pcs.,

 G_{min} – minimum estimated flow rate value, m³/h,

 $V_{\text{имп}}$ – weight of MT impulse, m³,

 τ_{H3M} – estimated period of volume measurement (5 minutes, hour, day, month, year), h, $\delta_{II}(X)$ – limit of the permissible relative error when performing arithmetic operation with the parameters in accordance with table 2.4, %.

The limits of permissible error calculated using formulas (2.1 - 2.4) for certain types of primary MTs are shown in table 2.5.

The ranges of the medium measured parameters within which calculations are performed are shown in table 2.6.

The limits of the permissible relative error for calculation of parameters of certain media depending on the type of the measurement medium and method are shown in table D.1 of Appendix D.

Parameter measured,				Permissible e	rror limits
UM	Name and type of	Range			
	МТ	MIN	MAX	Designation	Interval
Temperature, °C	RTC-50, W ₁₀₀ =1.428	0	200	$\Delta(t_{\rm Tc}), ^{\circ}{\rm C}$	± 0.2
	RTP-50, W ₁₀₀ =1.391	0	400		
	RTC-100, W ₁₀₀ =1.428	-50	200	$\Delta(t_{rc}), °C$	± 0.1
	RTP-100, W ₁₀₀ =1.391	-50	400		
	RTP-500, W ₁₀₀ =1.391	-50	400		
	RTP-1000, W ₁₀₀ =1.391	-50	400	$\Delta(t_{\rm Tc}), ^{\circ}{\rm C}$	± 0.5
Pressure,	MT with outputs	0	P _{max}	γ(P), %	± 0.1
kgf/cm ² , MPa	0-5, 0-20 mA			• • • •	
Differential pressure,	MT with outputs	0	ΔP_{max}	γ(ΔP), %	± 0.1
kgf/cm ² , kPa	0-5, 0-20 mA			• < 7	
Pressure,	MT with outputs	0	P _{max}	γ(P), %	± 0.13
kgf/cm ² , MPa	4-20 mA			• • • •	
Differential pressure,	MT with outputs	0	ΔP_{max}	γ(ΔP), %	± 0.13
kgf/cm ² , kPa	4-20 mA				

Table 2.5 – Permissible error limits for conversion of signals of certain primary MTs.

Table 2.6 – Ranges of the medium parameters being measured

Media Temperature, °C Pressure, MPa

T10.00.60 PЭ Rev. 05.07 of 27.03.18

	minimum	maximum	minimum	maximum
Water	0	200	0.1	5.0
Vapour	100	600	0.1	30.0
Natural Gas	-23.15	76.85 ¹⁾	0.1	30.0 ¹⁾
Pressurised Air	-50	120 5)	0.1	20.0 5)
Petroleum Gas	-10	226	0.1	15.0
Oxygen, azote, argon, hydrogen ammonia ³⁾	-73.15	151.85	0.1	10.0
Carbon dioxide, acetylene ²⁾	-53.15	151.85	0.1	10.0
Gas mixture ⁴⁾	-73.15	126.85	0.1	10.0
Crude oil and refined products	-50	100	0.1	10

Notes:

For transducers equipped with software 'TEKON19-M1 T10.06.292-05', 'TEKON19-M2 T10.06.362-05', 'TEKON19-15 T10.06.319-05' version 05.xx; for other transducers or when measuring flow rate with an IRVIS-K-300 flow meter, the pressure measurement range is (from 0.1 to 7.5) MPa, the temperature measurement range is (from -23.15 to +50) °C.

2) The lower limit of permissible temperature is determined by the pressure value.

3) The physical state of ammonia (gas or liquid) for any combination of temperature and pressure in the specified range is determined automatically.

4) The lower limit of temperature is determined by the composition of gas mixture and pressure.

5) For the Annubar tube, the maximum temperature is 100° C, pressure – 9 MPa.

(Revision, Amendment No. 3).

2.2.5 The TEKON-19 (except version 11) provides programming (adjusting) for a specific technological facility using a PC by setting the desired project, i.e. an executable set of tasks and a list of parameters to be displayed, as well as types and features of primary MTs. Type projects recommended for use for most customers are contained in the database (DB) supplied on the CD together with the TEKON-19. There is an opportunity to create a project independently, which is different from the standard one.

The TEKON-19 can be connected to a PC for programming via RS-232 TTL technological interface, the CAN-BUS basic digital interface, or an additional RS-485 interface (versions 15, 15M) via the corresponding adapters manufactured by the manufacturer and communication equipment of information communication channels.

2.2.6 The TEKON-19 provides the ability to calculate the average time values of any calculated parameters at specified intervals of time – estimated intervals with a duration from 1 to 30 minutes, hours, days, months.

2.2.7 The TEKON-19 provides the ability to calculate the flow-weighted average of temperature and pressure of the measured medium for specified intervals of time – calculation intervals from 1 to 30 minutes, hours, days, months.

P. 14

2.2.8 The TEKON-19 provides the ability to archive values of any calculated parameters for specified intervals of time – calculation intervals from 1 to 30 minutes, hours, days, months.

2.2.9 The TEKON-19 provides the ability to accumulate any integral parameters in the range of 0 to 10^6 units. When the corresponding integral meter exceeds 10^6 , the parameter integer part is counted again from zero, the fractional part is retained.

2.2.10 The TEKON-19 provides bit signs recording of the current state of each of the input frequency-number-pulse MC.

2.2.11 The TEKON-19 provides communication of any measured and calculated parameters via the main digital CAN-BUS interface or the additional RS-485 interface (versions 15, 15M) via the corresponding adapters produced by the manufacturer and communication equipment of information communication channels on the PC request.

2.2.12 The TEKON-19 (except version 11) provides the ability to display date and time on the two-line screen, as well as the selected parameters along with their names, in the main menu, the archive menu and the cyclic menu. The main menu can include up to 200 parameters, and the archive menu can include up to 56 archive parameters with possible view of each archive to the full depth. The displayed parameter is selected by means of two menu scroll buttons located on the front panel. The cyclic menu can include up to 10 parameters. All menu types are set up at the commissioning stage. The display format is configured for each item separately, the number of decimals (from decimal point) is from 0 to 4, and the total number of characters is up to 8. The name length is up to 12 characters of the Russian and Latin alphabets. The parameters of the main menu can be adjusted if necessary after obtaining the appropriate level of access.

2.2.13 The TEKON-19 provides keeping the system log with information on the last 256 events – power on and off, recording of new parameter values, occurrence and disappearance of failures, keeping of intervention log with modification of parameter values (see 2.3.8). It is possible to generate one or several user event logs with information on the events of status change of the bit parameters set duting configuration.

2.2.14 The TEKON-19 ensures that information on the entered constants, tasks and characteristics entered in the reprogrammable read-only memory with electric information erasure and recording (Data ROM, Program ROM) is stored without distortion during the whole service life. The number of overwriting cycles is up to 100,000.

2.2.15 The TEKON-19 ensures that information on all measured, calculated, accumulated and archive parameters as well as date and time are stored in the randomaccess memory provided with the lithium battery (External RAM) backup power without distortion for 10,000 hours since the power supply cut off. 2.2.16 The TEKON-19 main power supply is an external DC source with voltage Un from 18 to 36 V. Maximum power consumption for any version is 6 W.

Table 2.7 – Standard current consumption at the main power input depending on the version and the supply voltage (U π)

The TECON 19 versions	Current consumption, mA			
	Uπ = 24 V	Uπ = 18 V		
02M, 03M, 04M, 05M, 06M, 10M,15, 15M	90	110		
11	120 240 *)	120240 *)		
Note: *) depends on the number of connected MTs powered by the 7	TEKON 10 11 /	and the ourrant		

*) depends on the number of connected MTs powered by the TEKON-19-11, and the current growth at the moment

Table 2.8 – Standard current consumption at power input of frequency MC depending on MC configuration, input voltage (Uпд) and MT input condition

	Current consumption, mA/channel					
MC configuration	Uпд =	= 24 V	Uпд = 12 V			
	1)	2)	1)	2)		
MC is configured according to fig. 3.3, A	0	15	0	7		
MC is configured according to fig. 3.3, B, C	0	5	0	2.5		
MC is configured according to fig. 3.3, D	5	10	2.5	4.5		
Notes:						
1) open-circuit MT output (in passive condition)						
2) closed MT output (in active condition)						

There is a separate power input for this MC type from an external source with voltage Upd from 10 to 28 V in TEKON-19 versions with measuring channels of frequency and number of pulses. Maximum power consumption is 0.5 W per a channel. Typical current consumption values depending on the version and other conditions are shown in tables 2.7 and 2.8.

2.2.17 The TEKON-19 (version 11 only) provides galvanic isolation of analog measuring channels from each other (and not only from power supply circuits). The insulation parameters are similar to 2.2.18. To power the measuring transducers connected to these MCs, the TEKON-19-11 generates four mutually isolated secondary voltages from its own supply voltage. Thus, the TEKON-19-11 can function as a MT power supply unit. Secondary power supplies have the rated (stabilized) voltage of $24V\pm1V$, the permissible load current is up to 50 mA.

2.2.18 Insulation of measuring electric circuits in relation to the power supply circuits withstands a test voltage of almost sinusoidal shape with the amplitude of 500 V, frequency from 45 to 65 Hz during 1 minute under normal climatic conditions.

2.2.19 The minimum permissible electrical resistance of the electrical power circuits insulation in relation to the body is at least 20 MOhm under normal climatic conditions.

T10.00.60 PЭ Rev. 05.07 of 27.03.18

2.2.20 The TEKON-19 is ambient temperature and humidity resistant according to design category C3 as per GOST R 52931 (for the "T" option and version 15 to C2 category).

2.2.21 The TEKON-19 is atmospheric pressure resistant according to design category P1 as per GOST R 52931.

2.2.22 The TEKON-19 is mechanical loads resistant according to design category V1 as per GOST R 52931.

2.2.23 TEKON-19 ingress protection corresponds to protection degree IP20 as per GOST 14254.

2.2.24 The TEKON-19 is resistant to the climatic factors and mechanical loads effects in transport packaging during transportation by road and railroad, as well as by airsraft transport in sealed and heated compartments in accordance with GOST R 52931.

2.2.25 The TEKON-19 meets the electromagnetic compatibility requirements of TR CU 020/2011

(Revision, Amendment No. 3).

2.2.26 The TECON-19 overall dimensions do not exceed 105x110x60 mm.

2.2.27 The TECON-19 mass does not exceed 0.5 kg.

2.2.28 Mean time between failures is 70,000 h. Failure criterion is nonconformance to the TV 4213-060-44147075-02 requirements.

2.2.29 The average service life is 12 years. The limit state criterion is the repair costs exceeding 50% of a new unit price.

2.2.30 Mean time to recovery does not exceed 4 h.

2.3 Transducer design and operation

2.3.1 Parameter system and software

2.3.1.1 All data necessary for configuring the TEKON-19 and getting results of its work during operation are available through its interfaces using a **parameter system** stored in the PC database. Each transducer within the system is considered to be the T20 system **module**. Its software consists of a set of **tasks** that process **input parameters** and **constants** following specified **algorithms**, and result in the **output parameters**.

Parameters and tasks are divided into **basic** and **loadable** ones.

2.3.1.2 A **constant** is a numerical value set at the stage of creating a loadable project (the first stage of configuration) unavailable for reading and modification after loading the project into the controller.

2.3.1.3 A **parameter** is a unit of data available for reading and recording. Each **parameter** inside the module is characterized by two names (full and short), its number, purpose, access level, memory location and internal representation. Parameters of **basic** tasks have uniquely defined **hard** numbers that are the same for all the TEKON-19 transducers of this version. Parameters used to make a **loadable** project have **flexible** numbers that are assigned to them at the stage of creating a loadable project and may vary in different projects.

Parameter values, including constant ones, as opposed to **constants**, can be set or changed during the second stage of configuration or during operation.

Parameters are grouped according to their tasks and they form the so-called **parameter tree**.

PC access to a parameter is performed through its number. The parameter numbers correspondence to their name, access level, internal representation and location in the transducer memory is described in the T20 system database located on the PC disk and can be specified in the project loaded into the transducer which can also be stored on the PC disk for convenience.

2.3.1.4 **Basic** tasks are included in the TEKON-19 **basic** software and are components of its operating system. Composition of basic tasks is unchanged for each transducer version. All input and output parameters of basic tasks are **hard (basic)**. A summary list of basic tasks and version parameters is specified in Table. B.1 of Annex B.

2.3.1.5. Loadable tasks included in the project are loaded at the first stage of the TEKON-19 configuration for each specific application. They compose the task queue executed during operation, which forms all the required output parameters. Most parameters for loadable tasks are flexible. A loadable task queue is generated based on the database algorithms. A summary list of the TEKON-19 algorithms is specified in Table B.2 of Annex B.

2.3.1.6 The loadable tasks are performed by the TEKON-19 operating system in the **background** cycle in accordance with their position in the queue. The program background cycle duration depends on the number and type of loadable tasks, ranges from 1 to 15 seconds, and the basic software always rounds it to an integer number of seconds.

2.3.1.7 All parameters of any module can be accessed via the RS-232 TTL technology interface for their configuration, or via the CAN-BUS digital interface using the corresponding adapters produced by the manufacturer and communication equipment of data link channels for configuration and dispatching.

The PC software for setting the parameter values is supplied on a CD in set with the TEKON-19 (software Teleport T10.06.208). Dispatch software should be purchased separately.

The most important operation parameters can be displayed on the screen via the screen "menu" on the TEKON-19 front panel.

2.3.1.8 All the parameters are divided into the groups according to their application:

•Factory constants ("FC" in the list of parameters tables) characterizing the design features and electrical characteristics of the transducer equipment. The FC values are entered by the TEKON-19 manufacturer and do not change in the process of operation.

•Configuration parameters ("CP" in the list of parameters tables) ensuring the TEKON-19 programming for a specific technological object within the the project being implemented. These include a list of tasks to be performed, the MT characteristics, method of pressure measurement, flow rate units of measurement, time parameters, settings for exchange interfaces, a list of parameters displayed in the menu, etc. These parameters are PC entered either by the manufacturer according to the specification of a particular customer, or by the consumer during the commissioning at the facility. Their multiple overwring is possible during operation.

•Calculated parameters ("C" in the list of parameters tables), which are the result of the tasks operation that are loaded into the TEKON-19. These are, for example, the instantaneous and accumulated value of the flow rate, heat and electrical energy, average temperature and pressure, current time and date, etc. The most important parameters for the user can be displayed in the screen menu.

•Archival parameters ("A" in the list of parameters tables) as per calculated intervals, hours, days, months.

•Service parameters ("S" in the list of parameters tables) containing intermediate results of calculations for all tasks, self-check results, as well as information that can be used to assess the correctness of the TEKON-19 work during operation, adjustment and maintenance and repair works.

2.3.1.9 Several levels that are given below in order of increasing priority can be outlined following the parameters access:

•*User*, the lowest priority. The user can read parameters, which reading access code is equal to "1". There is no option to record the parameters.

•Service Engineer performs the TEKON-19 configuration for a specific technological object. The service engineer can read and record parameters, which access codes are equal to "1" or "2", including the loadable tasks queue.

•*Customer Engineer and Developer* performs the TEKON-19 initial configuration at the manufacturer. The customer engineer can read and record parameters, which access codes are equal to "1" through "3".

For additional access levels information see 2.3.10.

2.3.2 Measurement of analog signals

2.3.2.1 If there are analog MCs in this TEKON-19 version (resistance and current rate MCs), they are numbered separately by channel types, "Ti" is for resistance measurement with indices "i" from 0 to the maximum value and "Ji" is for current rate measurement also with indices from 0 to the maximum value. Availability and quantity of each type MCs depends on the version (see Table 2.1).

2.3.2.2 To measure voltage at analog MCs, an analog-to-digital converter with a conversion time (from 120 to 160) ms per each MC is used. The start of conversion and readout is performed through the processor interrupt system, which slightly affects the duration of the background cycle. The measured voltages are converted to the float point form and placed in circular buffers of 8 positions each.

2.3.2.3 Voltage digital filtering of each MC is performed for noise smoothing and accidental runouts. For this reason, the arithmetic average of the last 8 measurements is calculated once at the beginning of each background cycle. It is stored as "measured voltage" parameters 011C-0123. Further for each of them one of the two main parameters, the resistance or the current rate, is calculated depending on the MC purpose.

2.3.2.4 The obtained values of the MT current rate (parameters 0400-0403) and the thermal transducer resistance (parameters 0404-0407) can be input for the loaded tasks of physical parameters calculation, that are actually measured by sensors connected to the channels. The person that was in charge of the commissioning shall be responsible for control of the correct use of parameters.

P. 20

2.3.3 Measurement of frequency and number of pulses

2.3.3.1 The availability and number of discrete parameters MCs (MC of frequency and pulse numbers) "Fi" depends on the version (see Table 2.1). MCs are numbered, starting from zero, without missing numbers.

The current state of each discrete MC is reflected in 0506 - 050D bit parameters, however, the update rate for these parameters in the software is low and allows to evaluate signals that change maximum once per cycle ((1 - 15) seconds).

2.3.3.2 To avoid false responses of pulse meters caused by short-term pulse noise and "bounce" of the MT contacts with a reed output, hardware-software filtering of pulses can be enabled in the TEKON-19 by means of their decimation at a frequency of about 250 Hz. It is switched on for each channel separately by setting the single value of bit parameters 0200 - 0207 "250 Hz digital filter on". Filtering is permissible only in the case when the maximum frequency of pulses on a given MC does not exceed 100-120 Hz.

2.3.3.3 Three independent counters of the number of pulses are programmed using software and hardware to measure the number of pulses and the frequency for each MC.

2.3.3.4 The first counter (parameter 0410-0417) determines the number of pulses received at the input during the last cycle of the main program. It is a two-byte unsigned integer (from 0 to 65,535), the counting starts on each program cycle beginning from zero. The parameter is updated at the beginning of each program cycle and can be used by loadable tasks to calculate the flow rate from the sensors readings with the pulse-number outputs.

2.3.3.5 The second counter (parameter 0208-020F) keeps the total count of incoming pulses. It is a two-byte unsigned integer, with ring counting performed from 0 to 65,535, and then again from zero. It has a purely service purpose for a single transducer; operating as part of a module system, it can be used by external modules to calculate the flow rate. The parameter is updated once during each program cycle.

2.3.3.6 The third counter is used to determine the frequency of the input pulses and counts the number of pulses received at the input during the last second. At the end of each second its value is copied to parameters 0210-0217 as an instantaneous frequency value on the corresponding channel used only for debugging purposes, and represented by a two-byte unsigned integer. In addition, the same values for each input are recorded every second into circular buffers of 8 positions each. Once at the beginning of each background cycle, the data from the buffers are converted to floating point and digitally filtered by calculating the arithmetic average of the 8 most recent frequency samples. The averaging result is stored until the end of the cycle as parameter 0408-040F and can be used by loadable tasks to calculate the flow rate by readings of sensors with frequency outputs ("power" sensors).

2.3.4 Principles of accumulation (integration) of information

The following principles are used for integration of any accumulated parameters (flow, thermal energy, operating time):

2.3.4.1 Integration is performed by adding the previous value of the accumulated parameter with its increment corresponding to a given cycle.

2.3.4.2 Flow calculation algorithms using MT signals with pulse-frequency outputs, the flow increment for each cycle are calculated directly by the number of pulses received during the cycle. The instantaneous flow "power" value (units/hour) is not calculated. For most media, the increment is calculated and the flow is accumulated both in units of volume and in units of weight.

2.3.4.3 Flow calculation algorithms using MT signals with current or frequency outputs that measure the instantaneous value of pressure drop on the restriction device or the flow "power" calculate the "flow power" corrected value normalized to an hour for most media both in volume and in mass units. To obtain an increment for a cycle, it is multiplied by the cycle duration, expressed in hours, and then added to the previous value of the accumulated flow.

2.3.4.4 To improve the summarization accuracy, any accumulated values are stored as three separate parameters, each in a floating-point format. Two interconnected internal parameters that are inaccessible to the user, store the integer and fractional parts of the accumulated value separately. The integer part is incremented only if the sum of the increment for the cycle and the previous fractional part exceeds one. In parallel, the third parameter is used in the algorithm, which is the current sum of the integer and fractional parts of the accumulated value; it is the actual output commercial parameter. When correcting the value of the accumulated commercial parameter, its integral and fractional parts are adjusted automatically.

2.3.4.5 If the integer part of any accumulated parameter exceeds 10^6 , its counting starts again from zero without loss of the fractional part.

2.3.4.6 It is possible to calculate the flow weighted mean values of a parameter (for example, temperature or pressure) with the calculated interval ranging from 1 to 30 minutes, per hour, day, and per month.

NOTE: if within the given time period the flow equals zero, the "not a number" code is set as a weighted mean value, and is shown as "****" when viewed on the display indicator.

2.3.5 Time service

2.3.5.1 The TEKON-19 (except for version 11) has an internal clock powered from an internal power source, which keeps current timing and the current date counting, including the day of the week and two last digits of the year.

2.3.5.2 Automatic switch to daylight saving time and back to standard time is enabled or disabled during commissioning. If the switch is enabled, it is carried out:

• to daylight saving time: on the last Sunday of March, setting the clock forward, from 2:00 to 3:00 a.m.;

• to standard time - on the last Sunday of October, setting the clock back from 2:00 to 1:00 a.m.

When switching to daylight saving time, a "gap" with no information is generated from 02:00 to 03:00 a.m. in the hour and interval archives. When switching back to standard time, the time archive from 01:00 to 02:00 a.m. contains data from 01:00 a.m. daylight saving time to 01:59:59 standard time, i.e. data corresponding to two hours. For averaged parameters, it is an average of two hours; for accumulated parameters, the accumulated value for two hours, i.e. a double value. The interval archives, recorded initially during the period from 01:00:00 to 02:00:00 daylight saving time, are overwritten with their new values during the same period of the standard time (here 'n' is the interval duration in minutes).

Since the swich to daylight saving time has been canceled since the spring of 2015 in the Russian Federation, the automatic switch character should be removed.

2.3.5.3 The start of accumulation and averaging operations for specified time intervals, transcription of parameters "corresponding to the current time interval" into the parameter "corresponding to the previous time interval" is carried out during a work cycle, at the beginning of which the following time conditions are met:

• By calculated intervals – the moment of the next interval end. Duration of the calculated intervals is set at the commissioning stage via the F020 parameter within the range from 1 to 30 minutes and is common for all tasks. It is recommended to choose such duration that an hour could contain an integer number of intervals (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 minutes).

• By 30-minute periods – the moment of next period change, i.e. at moments of time 00 minutes and 30 minutes of each hour.

• By hours – the end of the next astronomical hour.

• By days – the end of the next calculation day, i.e. beginning of the calculation hour set via the F023 parameter ranging from 0 to 23.

• By months – the end of the next calculation month, i.e. beginning of the calculation hour of the calculation day of the month, set via the F022 parameter, ranging from 01 to 31. If there is no set date in the current month (for example, the 30th day in February), the last day of the month will be taken as the set date.

The corresponding period is archived during the next cycle.

2.3.5.4 To perform two-rate electricity metering, it is necessary to include into the project the tasks based on two-rate metering algorithms 021E and/or 020E in an amount equal to the number of metering circuits and, once, the task of choosing a rate by time and date (algorithm 0201). The duration of the discount rate on working days and canceled weekends is from HNB (hours of nighttime beginning) to HDB (hours of daytime beginning). On Saturdays, Sundays and holidays (according to the legislation of the Russian Federation as of the date of the device release or software version update), postponed weekends (they can be changed in a timely manner), the discount rate for natural persons is valid around the clock, for legal entities – as on working days.

2.3.5.5 During breaks in the transducer power supply, the "not a number" code is entered into all the archives in which recording moments were missed during the power outage, which is displayed as "***" when viewed on the display indicator. Dyring this time, no information is accumulated, except for the transducer malfunction time; the entire period of the power failure (plus one cycle after power recovery) is activated during malfunction. When recorded to the archive, any information in the first moment after power restoration will be referred to the recording period during which the power was off.

Let us examine this by the example of hourly archives. Let them archive the average water temperature per hour, the water consumption per hour and from the beginning of the day, the time of successful operation and malfunctioning of the metering station per hour and from the beginning of the day. Let us assume that the actual water temperature and the current flow are approximately constant, and the transducer is in good condition. At 13:20:45 the network power supply disappeared, and at 16:51:10 of the same day, it was restored. When viewing the archives, for example, after 18 hours, their condition may look like this:

Time	Temperat ure, °C	Flow, m ³		Successful operation, hours		Faulty operation, hours	
	-	per hour	per day	per hour	per day	per hour	per day
12-13	63.15	6.00	72.10	1.00	13.00	0	0
13-14	63.09	2.13	74.23	0.34	13.34	3.51	3.51
14-15	****	****	****	****	****	****	****
15-16	****	****	****	****	****	****	****
16-17	63.25	0.85	75.08	0.15	13.49	0	3.51
17-18	63.16	6.12	81.20	1.00	14.49	0	3.51

It is evident that the period of power fail (approximately 3.5 hours) is taken into account only as the time of malfunction and is archived to the hour during which the power was off. The accumulated value of water consumption for part-time hours is taken into account only from 13:00:01 to 13:20:45 and from 16:51:10 to 17:00:00, therefore during these hours its value in the archive is less than the real one. The partial time of the hour is practically not reflected in average values (in this case, for temperature), since averaging occurs constantly.

2.3.5.6 Similarly, the archives are also filled in when the transducer is temporarily swiched to the STOP process mode and back into the OPERATION mode (see 2.3.11).

2.3.6 List of TEKON-19 loadable algorithms

2.3.6.1 Software configuration, i.e. selection of loadable algorithms from the database, compilation of a list of loadable tasks, setting up and loading into the TEKON-19, is performed via a PC using the Dialog-19 and Teleport software (delivered on CD with TEKON-19). Principles of working with programs are set out in the embedded help functions.

2.3.6.2 A complete list of the TEKON-19 algorithms that are available in the database is specified in Table B.2, Appendix B. Input and output parameters of the loadable tasks, as a rule, have "flexible" numbers and names assigned during the configuration process. Only those input parameters of loadable tasks have "hard" numbers that are used to enter information from the input channels (MT currents and frequencies, number of pulses per cycle, etc.).

2.3.6.3 During configuration, tables of loadable tasks and their parameters, as well as the screen menu are loaded, stored and used in the TEKON-19 program ROM. For display indication, the standard name of the created task queue and a user-defined arbitrary object name are loaded and stored.

In addition, a list of "short" task names is loaded for storage, which is used only when a lost project task queue file is restored from the controller into the PC. It is not used for operation of the controller itself.

The remaining information about the set of tasks loaded into the TEKON-19 is stored only in the PC database.

2.3.7 Features of serial exchange interfaces

2.3.7.1 The **main** information channel for recording and reading data of all the TEKON-19 versions is a high-speed interface under the CAN BUS international standard, data transfer rate is up to 300 kBaud.

2.3.7.2 The CAN BUS interface features are set using parameter number 0004. Parameter 0004 defines the configuration and the exchange rate, and, as a rule, it must be equal to 41E0 (see table 2.10). See also 4.1.3.3.

2.3.7.3 RS-232 TTL is an **additional (technological)** interface (except version 11). The exchange rate can be assigned within the range from 1,200 to 28,800 Baud, the exchange protocol corresponds to standard FT1.2 of GOST R IEC 870-5-1-95 with features described in working documentation T10.06.59 PJ (T10.06.59 RD)and Appendix 1 thereto.

<u>IT IS PROHIBITED</u> to use the technological interface to create dispatching systems; it is **intended only for connection of manufacturer technological communication equipment** (information recorders PИ-97 and PИ-197, USB adapter - RS-232 T20 T10.00.92).

2.3.7.4 The RS-232 TTL interface is configured via parameters 0005 - 0007. The 0005 parameter means a transducer network number; it is recommended to assign it within the range from 01 to FE. The binary representation of parameter 0006 sets the implemented protocol features (for identification, see T10.06.59 PД):

- Digit 3 protocol FT1.1 (= 0) or FT1.2 (= 1);
- Digit 2 without CRC (= 0) or with CRC (= 1);
- Digit 1 CRC instead of CS (= 0) or CRC in the data body (= 1);
- The remaining digits are not used.

It is recommended to set the FT1.2 protocol without CRC, i.e. to set code 08. Network number codes 00 or FF are invalid and are perceived as setting up exchange for the FT1.2 protocol without CRC with network number 01. The number of stop bits is not configurable and always equals to one. Table 2.10

RS-232 TTL interface CAN BUS interface							
	2 I I L Interface	CAN BUS interface					
Rate, Baud	0007 parameter code	Rate, kBaud	0004 parameter code				
115,200 *)	FF84						
57,600 ^{*)}	FF80						
28,800	FF00	300	41E0				
19,200	19,200 FD80		43E0				
9,600	9,600 FD00		45E0				
4,800	FA00	50	4BE0				
2,400	F400	20	5DE0				
1,200	E800						
Note: *) – not recommended							

2.3.7.5 The 0007 parameter sets the exchange rate constant according to table 2.10. Any code of this parameter other than those listed in the table, is automatically perceived as exchange setting up for the RS-232 TTL interface at 9,600 Baud, network number 01, the FT1.2 protocol without CRC.

2.3.7.6 To read and record the TEKON-19 parameters via a PC the 'Teleport' T10.06.208 software is delivered on a CD as a set with the TEKON-19.

2.3.8 TEKON-19 self-monitoring, event log and intervention log

2.3.8.1 TEKON-19 has an extensive system of periodic software self-test. According to the self-test results, the two-byte 0500 parameter 'failure condition' is generated; its binary digits are characteristics of current serviceability (condition '0') or fault (condition '1'), in accordance with tables 2.11 and 2.12. The 0513 parameter 'additional failures' was added in version 11, in other versions there is the 4-byte 0516

T10.00.60 PЭ Rev. 05.07 of 27.03.18

parameter 'extended failures', the first two bytes of which coincide with parameter 0500. For numbering of digits, see Appendix B.

The digit with number 1 of byte 0 'factory default settings error' is set by the 'OR' operation from three low-order digits of byte 2.

When viewing the values of these parameters via the 'Teleport' software, the failures decoding on the PC screen is performed automatically.

Table 2.11 – Bit-by-bit decoding of parameters 0500 "failure condition" and 0516 "extended failures"

By	Digi	Characteristic	Period	Possible reason	Elimination method
te	t				
0	0	Restart (power on)	1 cycle after restart	Power on, WDT watchdog restart	Eliminate power failures. If the power is known to work properly and the failure still occurs, send for repair.
	1	Factory default settings error	256 cycles	Failures during recording, equipment failure	Send for repair.
	2	CS error of the user settings area	256 cycles	Failures during settings recording	Check the settings parameters, re- record the corrupted ones. If the failure persists, send for repair.
	3	Task queue error	each cycle	Queue creation errors	Check the task queue correctness, re- record it. If the failure persists, send for repair.
	4	ADC failure	constantl y	ADC is not ready during more than 1 s	If failure occurs frequently, send for repair.
	5	Failure of recording in flash-memory	•	Record failure or program ROM failure	Send for repair.
	6	Invalid parameter	constantl y	Setup errors	Check task settings, re-record incorrect parameters.
		CS error of settings menu	256 cycles	Failures during recording of the menu description	Check the menu setting, re-record corrupted parameters. If the failure persists, send for repair.

1 40	10 2.1		1		
-	Digi	Characteristic	Period	Possible reason	Elimination method
te	t				
1	0	Algorithmic failure	each	Parameter 0501 is	Find out the causes and eliminate them
			cycle	equal to 1	
	1	CS error of the	256	Task queue	Re-record task names from the DB. If
		program ROM task	cycles	recording failure	the failure persists, send for repair
		name space			
	2	Stop	each	Technological	It is set and deleated through the
			cycle		exchange channels or the service
					menu; it does not appear on its own.
	3	Technological	256	• •	Remove the technological jumper and
		jumper	cycles	removed	switch the power off and on
		CAN failure		Failure	Switch the power off and on
	5	Task queue	256	Task queue and	Check the task queue, re-record the
		mismatch with its	cycles	its ID recording	incorrect parameters from the
		ID		failure	database. If the failure persists, send
	6	Task queue CS	256	Task queue	for repair
		error	cycles	recording failure	
	7	General failure	each	Formed by OR	Eliminate the failure causes in other
_		(parameter 050E)	cycle	from the rest	digits
2	0	Factory default	256	Recording failure,	Send for repair
	1	settings CS error	cycles	equipment failure	
	1	Program CS error			
	2	Software version			
	-	number error	1		
	3	Invalid integral	each		Check the tasks settings, take special
	4	Invalid increment	cycle	equipment failure	care that there is no dividing by zero
					and invalid integral values, record the
	75				correct values.
	13				

Table 2.11 continued

Table 2.12 - Bit-by-bit decoding of the 0513 parameter 'additional failures' (only for the TECON 19-11)

By	Digi	Characteristic	Period	Possible reason	Elimination method
te	t				
0		ADC failure of	constantl	Channel ADC is	If failure occurs frequently, send for
		channels I0-I3	2		repair.
				more than 1 s	
	4	CAN failure		CAN controller	Send for repair
				failure	
	5-7	-	-	-	-
1	0-7	-	-	-	-

2.3.8.2 During each work cycle, the TEKON-19 basic software analyzes the state of parameter 0516 and performs three basic operations:

• It generates a general serviceability/malfunction symptom for the TEKON-19 as the 050E bit parameter. The TEKON-19 is serviceable during the current cycle and parameter 050E is set to condition '0' if there is no failure got in the analyzed

P. 28

T10.00.60 PЭ Rev. 05.07 of 27.03.18

parameter. Otherwise, the TEKON-19 is faulty during the current cycle, and parameter 050E is set to condition '1'. This parameter is recommended for time management control of the TEKON-19 servicability/malfunction.

• It records the possible fact of a change in the failures condition in the analyzed parameter, i.e. generation of 'new' or removal of 'old' failures, in the system event log (some events are additionally recorded immediately at the moment of their occurrence).

• It reflects the malfunction symptom status on the front panel indicator (see 4.2.2.4).

2.3.8.3 Some of the loadable tasks may form additional bit malfunction symptoms that no longer relate to hardware failures of the TEKON-19 itself, but that are external failures that violate the logically normal operation of one of the metering units. These features include, for example:

• features of the external measuring circuits opening, generated by algorithms of the (current and frequency) linear sensors and temperature calculation algorithms of the thermal transducers;

• bit signs of any parameter exceeding the technological tolerances;

• bit signs of lack of response to an external parameter request from another module in the CAN-BUS line, generated by algorithms of the external parameters input and archiving;

• other bit signs at the request of the user.

If the user wants to combine external symptoms of failures with the general TEKON-19 failures system, he should assign the bit parameter 0501 'Algorithmic failure' as an output symptom of external failures collected according to the logical 'OR' sense from individual failure symptoms. The condition of this parameter is checked by the basic software, but not set.

2.3.8.4 In order to form the serviceability/malfunction time each metering unit implemented in the TEKON-19 should combine the total TEKON-19 failure (parameter 050E) according to the logical 'OR' principle with bit signs of malfunction related to this metering unit, and submit the resulting serviceability/malfunction symptom to the input of the 'operating time' task (algorithm 0200). In case of the resulting symptom zero condition, the serviceability time counter for the metering unit will be incremented during the current cycle, in case of a single condition – the malfunction time counter.

2.3.8.5 The TEKON-19 system event log is made following the principle of a ring stack and it saves information about 256 recent events at any time. It is available only for reading through index parameters 0901 - 0904. Parameters with index '0' contain information about the most recent event, with index '1' – about the last but one, etc. The event log has a complex structure and is decoded when viewed by the 'Teleport' software.

Recordable events include in particular:

- Initial launch of the program, cleaning of the external memory, full test of the external memory, erasing of the original content.
- Powerup and powerdown (including restart due to hardware and software issues).
- Recording of any parameter with a record access level not lower than '2'. In the STOP mode, the number of recorded parameters is simply counted.
- Change in the number of the current TEKON-19 failures.
- Attempt of a background task to either call for an unknown parameter for reading or recording or to record into a parameter located in the read-only memory (program ROM, data ROM).
- The program switch over to the OPERATION and STOP modes.
- Retrofit of the basic software version (first power-up after software retrofit).
- Detection of unacceptably large numbers during the calculation process.

2.3.8.6 The TEKON-19 intervention system log is is made following the principle of a ring stack and it saves information about last 1,024 changes in the parameter values at any time. It is available only for reading through index parameters 0905 - 090B. Parameters with '0' index '0' contain information on the most recent intervention, those with index '1' – on the last but one, etc. The intervention log has a complex structure and is decoded when viewed by means of the 'Teleport' software.

This log records date and time of the parameter change, parameter number as well as its previous and new value.

2.3.8.7 The TEKON-19 controls the occurrence of unacceptably large numbers in arithmetic calculations that appear, as a rule, when an attempt to divide by zero is made. A detected large number is automatically replaced by a zero value. Due to absence of free bits in the 0500 parameter, the fact of the large number occurrence is recorded only in digits 3 or 4 of the second byte of the 0516 extended failure parameter, but it is also reflected in parameter 050E and is entered into the system event log.

<u>ATTENTION!</u> If the internal battery is discharged below the permissible level (see 8.1.3), information in the event and intervention logs may be distorted.

2.3.9 Information updating

2.3.9.1 During each program cycle, the following is updated:

- instantaneous values of all measured and calculated parameters;
- all accumulated and average parameters, entitled as 'during the cycle', 'during the current interval', 'during the current 30 minutes', 'during the current hour';
- all accumulated values of flow entitled as 'during the current interval', 'during the current 30 minutes', 'during the current hour', 'during the current day', 'during the current month', integral flow.

2.3.9.2 At the time of the next calculation interval change, all the information entitled as 'during the previous interval' is updated as well as the average values for the current day. The information is entered into the intervals archives, with the index of an element in the archive referring to the time of HH:MM of the completed interval **end**.

2.3.9.3 At the time of the next 30-minute period change, all the information entitled as 'during the previous 30 minutes' is updated. The information is entered in the 30-minute archives, with the index of an element in the archive referring to the time of HH:MM of the completed interval **end**.

2.3.9.4 At the time of each hour change the following is updated:

- all information entitled as 'during the previous hour';
- average values for the current month;
- information is recorded in the clock archives, with the index of an element in the archive referring to the 'HH' number of a **completed** hour.

2.3.9.5 At the time of the calculation day change, at the moment of HH_{CALC} hours 00 minutes, all the information entitled as 'during the previous day' is updated. The information is entered in the archives of the day, with the index of an element in the archive referring to a **completed** date. This should be considered when viewing the archive through the menu (see 4.2.5.6).

2.3.9.6 When the calculation month changes, at the moment of HH_{CALC} hours 00 minutes of DD_{CALC} of each month, all information entitled as 'during the previous month' is updated. Information is entered in the archives of the months. The index of the element in the archive refers to the **completed** month, if the calculation date is before the 20th day, and to the **current** month otherwise. This should be taken into account when viewing the archive through the menu (see 4.2.5.6).

2.3.10 Protection of information against unauthorized access

2.3.10.1 Access to any TEKON-19 information included in the system of its parameters is regulated by the specified level of access to it for reading and recording operations: 'User', 'Service Engineer', 'Customer Engineer', as described in 2.3.1.10 and table B.1, and the current level of access for the channel. The specified access level to "hard" parameters is set in the TEKON-19 program itself and cannot be changed (see table B.1). The specified level of access to the parameters of the loadable tasks is set when the project is created, and it must be chosen so that the parameters of interest for the 'User' are available for him to read (level 1), but, as a rule, not available for recording, with the possibility of their correction only by the 'Service Engineer' (Level 2). It ensures that the most important parameters, configuration and commercial ones are protected from unauthorized changes.

2.3.10.2 Since the main way to read and record any TEKON-19 parameters is to exchange data via serial channels, CAN BUS line or RS-232 TTL interface, PC running exchange programs supply the TEKON-19 with data on the level of current access via a channel. If this level is lower than the level assigned to a specific parameter, the operation of its reading or recording into the TEKON-19 is blocked. PC notice on the level of current access is given through a system of program passwords; methods of their application are described in the documentation for the corresponding application. When energized, the TEKON-19 program automatically sets the current access level for all channels to '1', i.e. 'User'.

2.3.10.3 Channel access levels are declared independently of each other. If an increased level of access was announced via the CAN BUS line, access with such a level will be allowed only to the module that declared it (let's call this module the first one); for other modules, the access level remains at '1'. Another module can change the access level only after the first module either reduced the access level to '1' or did not perform exchange with the TEKON-19 during 256s. If an increased level of access was announced through the RS-232 TTL interface, it allows access for any module connected to the interface. After no interface exchanges within 256s, the current access level is automatically reduced to '1'.

2.3.10.4 For additional protection of the TEKON-19 commercial and setting parameters against unauthorized recording, the possibility of internal protection is provided by means of a built-in password system, which blocks arbitrary increase in the current level of access for the channels. There are two levels of internal password – the customer engineer password protecting the factory default settings (parameter F026), blocking access to level 3, and the service engineer password protecting the commercial parameters (parameter F025), blocking access to level 2. Both passwords are eight-digit hexadecimal numbers stored in the non-volatile memory with a high degree of protection. Thus, the total number of different combinations for each password is 2^{32} , i.e. 4,294,967,296.

If the password value differs from two reserved codes 00000000 or FFFFFFFF, the appropriate access level can be set only by first sending the required password through the channel using the access authorization procedure. This procedure is included in the channel exchange protocol, the method of entering the password is set out in the documentation for the PC software, but the password value itself should be known only to the person protecting the information of this level.

2.3.10.5 The customer engineer factory password is set when the transducer is released by the manufacturer, it protects the factory default settings, and is not reported to the operating organizations.

Upon release by the manufacturer, the service engineer password is removed (it is usually FFFFFFF), and, if necessary, is set by the operating or supervising organization upon completion of commissioning and acceptance of the transducer into operation, either via a channel or via the service menu.

2.3.10.6 It follows from the above that it is only possible to read or change the service engineer password, as well as any parameters with the specified access level '2', if the access level is already set to not lower than the "Service Engineer", i.e. this can only be done by a person who knows the current value of the service engineer password. It is also possible to switch the transducer into the STOP technological mode only if you know the service engineer password. The memory area, in which the passwords are located, is unavailable for reading by conventional methods.

The factory password is known only to the representative of the manufacturer; reading and recording with the access level below the "Customer Engineer" level is not available.

2.3.10.7 To exclude the possibility of password mining for the purpose of unauthorized access to commercial information and password-protected task settings, after several wrong passwords are entered consecutively, further attempts to change the access level over the channel are blocked for a long time, only parameter read and record commands are executed at the current access level.

2.3.10.8 If the value of a set password is unknown, the password can be removed or its value can be restored only at the manufacturing factory, and this operation is not covered by the warranty.

2.3.10.9 In order to protect the program and data against task queue errors caused by errors during queue creation, failures during its recording or due to incorrect configuration, the following types of program controls are implemented:

- If the format of a loaded queue does not meet the standard requirements, execution of the task queue is completely blocked with a failure indication 'task queue error' (see table 2.11).
- If a parameter specified in the task queue to be read or recorded is unknown, operation involving it is not performed, the 'invalid parameter' failure symptom is registered (see table 2.11), but the task and the queue as a whole continue to run until the end.

- If a parameter assigned in the task for recording is placed in one of the ROM types, the recording operation is not performed, the 'invalid parameter' failure symptom is registered (see table 2.11), but the task and the queue as a whole continue to run until the end.
- If the background cycle duration has exceeded 128 seconds, the TEKON-19 program automatically restarts, as if a power failure has occurred.
- The input task is not executed if the number of the external module specified in it iquals 00 or FF, or the response from the module is not received within 1 second. The exchange failure is registered, the queue continues to run until the end.

In all the above cases, except for input task errors, information about the failure situation is registered in the system event log, where it can be viewed and decoded using the 'Teleport' software.

2.3.10.10. To ensure the required 'high' level of software protection as per Guidelines R 50.2.077-2014, the integrity of the metrologically significant software is periodically monitored based on the calculation of the program checksum using the CRC32 algorithm and comparing the result with the reference standard. If the CRC32 does not match, as well as in case of factory default settings CS failure or a failure of the main program version number, the corresponding symptoms are generated in byte 2 of parameter 0516 (see 2.3.8.1) with registration made in the system event log. Execution of all measurements, as well as execution of the task queue is stopped, and the '#' sign is displayed on the indicator as a symbol of the operation mode (see 4.2.2.5).

2.3.11. Operating modes

2.3.11.1 The TEKON-19 can be in one of the two modes of operation: OPERATION and STOP. Change of modes can be performed either through the serial exchange channel or through the service menu of the front panel display. In order to change the mode it is necessary to know the "Service Engineer" level password.

2.3.11.2 During operation, the TEKON-19 should always be in the OPERATION mode. In this mode, all the transducer functions are performed; all rigid algorithms are carried out, including measurement of input values; the loaded task queue is executed, including input, accumulation and archiving of information; operations with any display menu items are possible.

NOTES: when the technological jumper is set as well as in case of factory default settings failure (see 2.3.10.10), execution of the task queue is blocked.

2.3.11.3 The STOP mode is a technological one. It runs all the rigid algorithms, including measurement of input values, but the loaded task queue is not executed. The mode is applied in two cases:

• When loading a task queue, menu description and in some other configurationrelated cases, the corresponding PC programs automatically switch the transducer T10.00.60 PЭ Rev. 05.07 of 27.03.18

into the STOP mode briefly and then return it to the OPERATION mode. Menu operations are not recommended at these times.

• During the operation stage, when removing the transducer from its working position for verification or repair, it is recommended to switch the TEKON-19 to the STOP mode preliminarily via the display service menu (see 4.2.6) entering the password. The transducer records the date and time of shutdown, accumulation of integral values and the archiving is stopped. After this, the transducer can be turned off and sent for repair or verification operations. Special PC programs used at the manufacturer and authorized service centers guarantee preliminary saving of the information accumulated in the transducer and its subsequent restoration, with the transducer again being in the STOP mode. Upon the return of the transducer to the place of operation and connection of all circuits, it is required to switch the TEKON-19 to the OPERATION mode. Accumulated integral values did not change during the repair, and archives of all kinds from the memorized moment of switching to STOP until the moment of switching to the OPERATION mode will be filled with the code 'not a number'.

2.4 Scope of supply

The TEKON-19 scope of supply is specified in Table 2.14.

Table 2.14 – The TEKON-19 scope of supply

		Quan	tity
Name	Designation	As per TU	Act.
TEKON-19 calculating and measuring transducer	T10.00.60	1	1
Certificate	T10.00.60PS	1	1
Operation manual with the verification method provided	T10.00.60RE	1	1
in Section 6 'Verification' (on CD)			
CD with software and operational documentation	T10.06.295	1	1

(Revision, Amendment No. 3).

NOTE: Power supply source for the TEKON-19 and connecting cables are not included in the scope of supply and must be purchased separately.

2.5 Package

2.5.1 The TEKON-19 is packed in a box of corrugated cardboard.

2.5.2 Before stacking in the box, the TEKON-19 is packed in a plastic bag.

2.5.3 Accessories and maintenance documentation are placed in a plastic bag in a packing box with the transducer.

2.5.4 After packing, the TEKON-19 is compacted with auxiliary materials.

2.6 Marking and sealing

2.6.1 The TEKON-19 bears the following marking on the front panel:

- measuring device type approval mark;
- •logo of the manufacturer 'KREIT';
- •transducer name 'TEKON-19'.
- 2.6.2 The TEKON-19 bears the following marking on the rear panel:
 - manufacturer product code;
 - •version;
 - series and serial number;
 - rated value and supply voltage range;
 - maximum power consumption in watts.

2.6.3 Sealing is carried out at the junction of the front panel with the base of the body by gluing the label with the manufacturer logo.

3 INSTALLATION

3.1 Connection

3.1.1 The TEKON-19 is installed in a cabinet on a DIN-rail.

3.1.2 An external power supply, measuring transducers, exchange line and power outputs for galvanically isolated circuits are connected to detachable screw terminals for easy dismantling during system debugging and scheduled verification. For installation, it is recommended to use MKESh (MKЭШ) type cable (PVC sheathed shielded cable) according to GOST 10348-80 (or similar) with the required number of cores with a minimum cross section of 0.35 mm².

The terminals designation and the circuits name are shown in tables 3.1.a and 3.1.b. For designation of the MT power supply polarity, the '+' symbol indicates the source current from the TEKON-19, the '-' symbol indicates the sink current. For location and numbering of terminals, see Figure 2.1.

3.1.3 The TEKON-19 power supply is provided by connecting an external DC power source to the 'Un' terminals. Power should be connected after all other circuits have been installed. Electrical equipment of a building should include a switch or a circuit breaker installed in a cabinet near the TEKON-19 and its power source, marked as a shutdown device. Installation and dismantling of the TEKON-19 and its external circuits should be carried out with the transducer itself and all primary MTs connected to it de-energized.

3.1.4 The RS-232 TTL interface is connected to the computer's USB port using the USB adapter RS-232 T10.00.92 via a 4-pin USB-A socket located under the front panel of the TEKON-19.

3.1.5 MT connection

3.1.5.1 Connection of the temperature MT of RTC and RTP types is made to the resistance MC labeled 'Ti', where 'i' is the MC number. Connection is carried out only using a four-wire circuit in accordance with the diagrams shown in Figure 3.1, to the terminals numbered as per in Table 3.1.a. Connection of the Ji+ circuit with the U_ri + circuit and the Ji- circuit with the U_ri - circuit is performed directly at the point of connection to the MT. For connection, it is recommended to use a four-wire shielded cable with a minimum core cross-section of 0.35 mm², the cable length should not exceed 100m. Shields of all cables should be connected to the grounding bus at one point at the TEKON-19 side as close to the power supply source as possible.

ATTENTION! On the vacant (not used) resistance MC, it is <u>obligstory</u> to interconnect the Ji+, Ji-, U_ri + and U_ri - circuits as shown in Figure 3.1, b. Total resistance of all temperature MT of RTC and RTP type connected to one transducer over the entire operating range of measured temperatures should not exceed 4,000 Ohm.

3.1.5.2 Connection of the MT with standard current outputs is carried out to the current rate MC marked 'Ji', where 'i' is the MC number, according to the diagrams shown in Figure 3.2. For connection, it is recommended to use a two-wire shielded cable with a minimum core cross-section of 0.35 mm². Cable length should not exceed 150m. Shields of all cables should be connected to the grounding bus at one point at the TEKON-19 side as close to the power supply source as possible.

<u>Note.</u> When connecting sensors using spark protection barriers, the transfer resistance of the barriers should be taken into account in the sensor supply circuit.

In case of a transducer of the TEKON-19-11 version, each MT should be powered from a separate isolated power source in order to ensure mutual galvanic isolation of the measuring channels. It is recommended to use MT connected using the two-wire circuit – in this case, the power can be obtained from an isolated source of 4 x 24V, that is embedded into the TEKON-19-11 (diagram in Fig.3.2, c) If, nevertheless, a four-wire connection diagram is chosen, power should be supplied to the MT from an external power supply unit as shown in Figure 3.2, a.

3.1.6 Connection of flow MT and energy meters with number-pulse or frequency outputs.

3.1.6.1 Connection is made based on a two-wire circuit by connecting the samenamed MT circuits with the TEKON-19 terminals marked 'Fi', where 'i' is the MC number and the numbers according to Table 3.1.a with observation of the polarity. It is possible to connect MT of three types:

- with an active output signal from -24V to 24V (MC input resistance is 50 kOhm)
- with a passive output signal designed for currents of up to 10 mA.
- with a passive output signal designed for currents of up to 0.5 mA.

The MT type is chosen by installing jumpers located under the terminals of a corresponding MC. Options for the jumpers installation are shown in Figure 3.3. For a MT with a passive dry contact output, the polarity of the circuits connection does not matter.

3.1.6.2 **ATTENTION!** The MC are combined into groups (see Table 3.1.a), each of these groups has one power input for all the channels of the group. When connecting the MT to at least one MC in the group, voltage from an external **insulated** power source must be connected to the power input of the group. In this case, all channels within the group are galvanically connected to each other, but they are galvanically isolated from the MC of the other group and the transducer power supply circuit.

<u>It is possible</u> to combine the power supply circuits of the MC groups with the transducer power supply circuit with observance of the polarity, provided that the characteristics of the power sources provided in 2.2.15 are observed. In this case, the measuring circuits of all MT will be galvanically connected with each other and with the transducer power supply circuit.

3.1.6.3 The use of MT with the maximum pulse repetition rate exceeding 100 Hz requires **mandatory disconnection** of digital filters of corresponding MC when setting up the transducer (see 2.3.3.2). Connection of such MT should be carried out by means of a separate two-wire shielded cable for each MC. MT power circuits are made separately. The length of connection lines in this case should not exceed 100 m.

<u>It is possible</u> to perform the MT connection with a four-wire cable, combining signal circuits and power circuits of one MT in it.

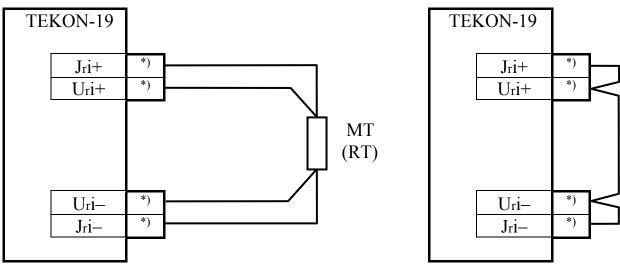
3.1.6.4 It is <u>recommended to enable</u> digital filters of the corresponding MC when setting up the transducer, when using a MT with a maximum pulse repetition rate of less than 100 Hz (see 2.3.3.2). Connection of such power supply devices is <u>allowed</u> <u>to be</u> carried out by multi-conductor shielded cable, positioning the signal lines together with other measuring circuits. The length of connection lines in this case should not exceed 300 m.

3.1.7 The transducer is connected to the CAN BUS information exchange line by connecting CAN L and CAN H terminals with the line buses of the same name. Terminal numbers for connection are given in tables 3.1.a, 3.1.b.

ATTENTION! The line topology shall satisfy a "common bus" type scheme. It is **<u>necessary</u>** to install the "TRM" jumper located under the CAN L and H terminals on two transducers that are located at the opposite ends of the line, the jumpers shall be removed <u>**mandatorily**</u> on all other transducers connected to this line. Normal operation of the data exchange system in the line composed, based on the topologies like "Star", "Cluster", etc., is not guaranteed. The length of one CAN line segment with a point-topoint connection type should not exceed 50m. When connecting two or more segments that include several endpoints, it is recommended to use "RS-62 line segment separators" that match the physical characteristics of the communication line and distributed loads. It is recommended to use the RS-485 AI-80 adapter in case of a sufficiently remote location of distributed segments.

Table 3.1.a –	Designation	of terminals	and name	of signals	for versions	(02M -
06M), 10M, 11						

Signal and body marki	ng	Circuit and its designa	tion in	T	ermin	al Nc	o. for	each	versio	on
		the diagrams		02M	03M	04M	05M	06M	10M	11
Resistance MC No.0		Current circuit	J_R0+	8	8	_	8	8	36	_
Resistance MC NO.0	-		Jr0-	5	5	_	5	5	33	
	T0	Measuring circuit	U_R0+	7	7	_	7	7	35	
		-	Ur0-	6	6	_	6	6	34	_
Resistance MC No.1		Current circuit	J_R1+	_	4	_	4	4	32	—
Resistance INC INC. I	-		Jr1-	_	1	_	1	1	29	—
	T1	Measuring circuit	U _R 1+	_	3	_	3	3	31	
		-	Ur1-	_	2	_	2	2	30	
Resistance MC No.2		Current circuit	J_R2+	—	16	_		26	28	
Resistance MC N0.2			Jr2-	_	13	_		23	25	—
	T2	Measuring circuit	U_R2+	—	15	_		25	27	—
		-	Ur2-	_	14	_		24	26	—
Resistance MC No.No. 3		Current circuit	J_R3+	_	-	_		22	24	—
Resistance IVIC INO.INO. 5			Jr3-	_		_		19	21	
	T3	Measuring circuit	U_R3+	_	-	_		21	23	—
		Ũ	Ur3-	_	_	_	_	20	22	_
Current rate MC No.0	Uп0	Power supply output	Uп0+	_	_	_	_	_	_	16
	UIIU		Uп0-	_	_	_	_	_	_	15
	10	Measuring circuit	+0LU	4	_	_	16	14	_	14
	JO	e	-0LU	3	_	_	15	13	_	13
Current rate MC No.1	TT_1	Power supply output	Uπ1+	_	_	_	_	_	_	20
	Uп1		Uп1-	_	_	_	_	_	_	19
	J1	Measuring circuit	UJ1+	2	_	_	14	12	_	18
	JI	0	UJ1-	1	_	_	13	11	_	17
Current rate MC No.2	Uπ2	Power supply output	Uπ2+	_	_	_		_	_	24
	UIIZ		Uп2-	_	_	_		_	_	23
	10	Measuring circuit	UJ2+	14	_	_	_	10	_	22
	J2	C C	UJ2-	13	-	_		9	_	21
Current rate MC No.3	11-2	Power supply output	Uπ3+	_	_	_	_	_	_	4
	Uп3		Uп3-	_	_	_	_	_	_	3
	12	Measuring circuit	UJ3+	_	_	_	_	_	_	2
	J3	~	UJ3-	_	_	_	_	_	_	1
Group of frequency MC	Uпд	Power supply input	Ипд1	24	24	2	24	36	20	—
and number of pulses MC			+							
No.0 3	1		Ипд1	23	23	1	23	35	19	—
			_							
	F0	MC input No. 0 ^{*)}	F0+	22	22	8	22	34	14	_
	1.0		F0-	21	21	7	21	33	13	_
	F1	MC input No. 1 ^{*)}	F1+	20	20	6	20	32	12	_
	1,1	wie input No. 1	F1-	19	19	5	19	31	11	_
	F2	MC input No. 2 ^{*)}	F2+	18	18	4	18	30	10	_
	1' 2	with input ino. 2	F2-	17	17	3	17	29	9	_
	F3	MC input No. 3 *)	F3+	16	_	_		28	_	_
	1.2	wie input No. 5	F3-	15	_	_		27	_	_

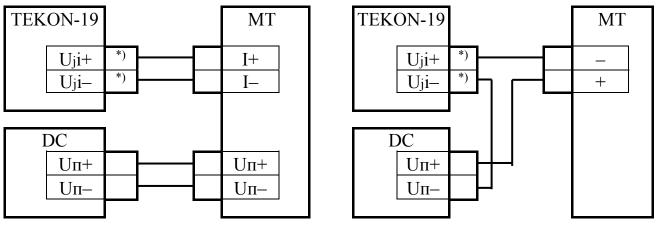

Table 3.1.a continued

Signal and body marking		Circuit and its design	ation in	Т	ermin	al No	o. for	each	versio	on
		the diagrams		02M 03M 04M 05M 06M 10M				10M	11	
Group of frequency MC	Uпд	Power supply input	Uпд2+	_		14	I	_	20	_
and number of pulses MC	2 011 <u>4</u>		Ипд2-		-	13		-	19	Ι
No.37	F3	MC input No. 3 *)	F3+	_		24	I	_	8	_
	15	MC input No. 5	F3-	_	I	23	I	—	7	-
	F4	MC input No. 4 *)	F4+	—	١	22	I	-	6	-
	14		F4-	_	I	21	I	—	5	-
	F5	MC input No. 5 ^{*)}	F5+	—	١	20	I	-	4	-
	15	MC mput No. 5	F5-	—		19		_	3	_
	F6	MC input No. 6 ^{*)}	F6+	_	_	18	_	_	2	_
	10	Wie input No. 0	F6-	—		17		_	1	_
	F7	MC input No. 7 $^{*)}$	rt No. 7 ^{*)} F7+	—		16		_	—	_
	I' WIC Input I	MC mput 100. 7	F7-	—	_	15	_	_	_	_
Uп		Power supply input	Uπ+	12	12	12	12	18	18	12
			Un-	11	11	11	11	17	17	11
CAN		CAN-BUS line	Н	10	10	10	10	16	16	10
CAN			L	9	9	9	9	15	15	9

Note: *) The polarity corresponding to connection of equipment with a passive output signal is indicated (Fig. 3.3, A and B). For equipment with an active output signal (Fig. 3.3, C and D) the polarity is opposite, i.e. "+" of signal source is connected to the "-" of the TEKON-19 input

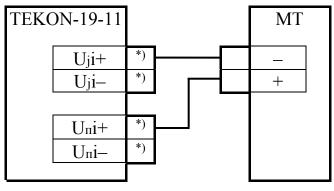
Table 3.1.b – Designation of terminals and name of signals for the 15, 15M versions

Signal name	Desig.	Termi	nal No.
		15	15M
1836 V DC power supply	+Uπ	12	12
	Uп	11	11
CAN-BUS communication	Can H	10	10
exchange line	Can L	9	9
	Can H	16	16
RS-485 communication exchange	Can L	15	15
line	Term +	14	14
	Term –	13	13
	Hart1+	8	8
HART1 interface	Hart1–	7	7
	Prm1+	6	6
	Prm1–	5	5
	Hart1+	4	4
HART2 interface	Hart1–	3	3
	Prm1+	2	2
	Prm1–	1	1
Control key 1	+K1	24	24
	-K1	23	23
Control key 2	+K2	22	22
	-К2	21	21
Control key 3	+К3	20	20
	-КЗ	19	19
Control key 4	+K4	18	18
	-K4	17	17



a) Wiring diagram

b) Vacant channel


Figure 3.1 - Wiring diagram of the temperature MT of RTC and RTP type i - channel number, MT – temperature measuring transducer,

*) – terminal numbers as per table 3.1.a.

b) two-wire

c) two-wire (TEKON-19-11)

Figure 3.2 - Wiring diagrams of MT with current output i - channel number, MT - measuring transducer with current output,

DC – direct current power supply,

*) - terminal numbers as per table 3.1.a.

P. 42

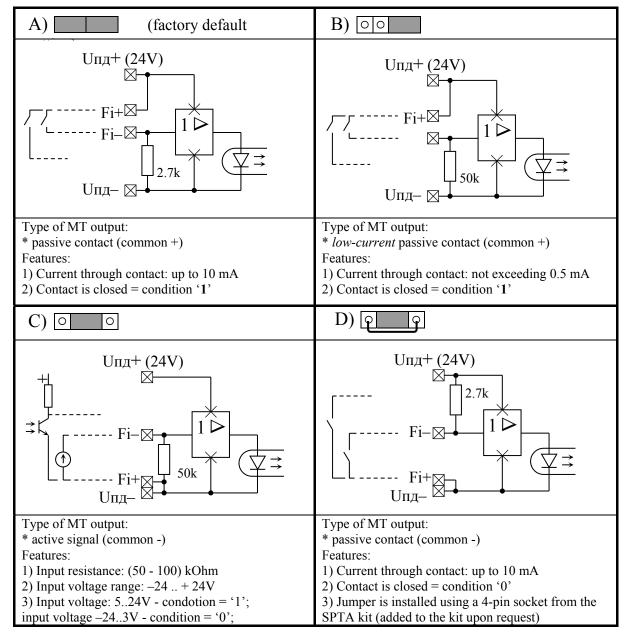


Figure 3.3 – Options of jumper installation when connecting MT with a number-pulse or frequency output

3.2 Tasks loading and configuration of the TEKON-19 parameters

3.2.1 The main way to access the TEKON-19 parameters for their configuration is to exchange with a PC via the CAN BUS line using the 'Teleport' T10.06.208 software supplied on a disk with the transducer. The ways to work with the program are described in its documentation and in the help function (HELP) section included in the program.

3.2.2 Configuration of the TEKON-19 for a specific facility is generally performed in three stages. In the following description, it is assumed that all factory constants are already set at the manufacturing plant, exchanges are performed with a PC via the CAN BUS interface. The TEKON-19 is released from the manufacturer set up to network number 01 (parameter 0000 is 01) according to Table 7.2 and the exchange rate is 300 kBaud (parameter 0004 is equal to 41E0).

3.2.3 The first stage: creation of the project (except version 11)

3.2.3.1. During this stage, the project is designed, i.e. the list of loadable tasks required for a specific application is generated based on the set of algorithms available in the database; the project files are saved onto the PC hard disk in the database.

3.2.3.2 For most customers, this step is not required when setting up the transducer. The TEKON-19 manufacturer has developed an extensive library of standard projects, and a ready-made project file from among those stored in the database on disk T10.06.152, supplied together with the transducer, can be used for operation.

3.2.3.3 As a rule, development of cutomized projects is carried out at the TEKON-19 manufaturer according to the customer specification. In some cases, this stage can be performed by the customer itself, provided that it has sufficient qualification. For the first stage, the 'Dialogue-19' T10.06.200 software is used, which is supplied on the disk with the device. The rules for working with it can be studied based on the built-in help functions.

3.2.4 The second stage: loading of the project

3.2.4.1 The stage suggests selecting a project from the database, which includes the queue of loadable tasks and a description of the display menu, and loading it into the TEKON-19.

3.2.4.2. The stage can be performed either at the TEKON-19 manufacturer according to the customer specifications, or by the customer himself. For implementation of the stage, the software 'Teleport' T10.06.208 version not lower than 2.61 or 'Dialogue-19' T10.06.200 can be used. Access level is the *Service Engineer*. Loading and configuration can be carried out via CAN BUS from a PC both in the laboratory and at the facility itself. During loading of the queue, the TEKON-19 is automatically switched to the technological mode STOP, after which it returns to the mode in which it was before loading.

<u>ATTENTION!</u> During the whole procedure of the project recording in the TEKON-19, the power cut of the transducer is <u>NOT ALLOWED</u>. This may lead to distortion of information and failure of the transducer, leading to the need of repair at the manufacturer's site in order to resolve the issue.

3.2.5 The third stage: setting of the parameter values.

3.2.5.1 The third and final stage of setting the TEKON-19 consists in assigning numerical values to all configuration parameters.

3.2.5.2 The stage is carried out, as a rule, by the specialists of the organization conducting the commissioning works at a specific facility, or by the user himself. To complete the stage, software 'Teleport' T10.06.208 is also used, as a rule.

<u>ATTENTION!</u> During recording into the TEKON-19 the value of any parameter located in the program ROM or data ROM reprogrammable memory (for parameter allocation see Appendix B, table B.1), de-energizing of the transducer is <u>NOT</u> <u>ALLOWED</u>. In addition, it is <u>NOT allowed</u> to simultaneously record one list of parameter values located in different areas of the memory (program ROM and data ROM). These actions may lead to distortion of information and failure of the transducer, leading to the need of repair at the manufacturer's site in order to resolve the issue.

3.2.5.3 In general, specific numerical values must be assigned to the following 'rigid' parameters present in this TEKON-19 version (excluding factory constants):

- Features of the CAN BUS interface (parameters 0000 0004).
- If exchange via the RS-232 TTL channel is intended, its features (parameters 0005-0007).
- Control parameters for pulse decimation (250 Hz filters) 0200-0207. When using a MT with a number-pulse output in the form of a reed switch and a pulse frequency not exceeding 100-120 Hz, it must be turned on, otherwise it must be turned off.
- Common configuration for calculation of thermal energy is the temperature of the cold source T_{XH} (Tcs), in relation to which it is calculated. If its value is assumed to be constant, the numerical T_{XH} (Tcs) value is entered in the parameter 0300 'standard temperature T_{XH} '(Tcs), and in the parameter 0306 'number of the parameter used as T_{XH} (Tcs)', the 0300 code (reference to constant) must be entered. If temperature T_{XH} (Tcs) is supposed to be measured, then the value of parameter 0300 can be arbitrary, and the code of the number of that parameter from the queue of loadable tasks, which represents the measured temperature T_{XH} (Tcs), should be entered in parameter 0306.
- Common configuration for calculation of absolute pressure and calculation of thermal energy is atmospheric pressure Patm. If its value is assumed to be constant, the numerical Patm value is entered in the parameter 0301 'standard atmospheric pressure', and in the parameter 0307 'number of the parameter

used as Patm', code 0301 should be entered (reference to the constant). If the pressure Patm is supposed to be measured, then the value of parameter 0301 can be arbitrary, and in parameter 0307 the code of the number of that parameter from the queue of loadable tasks should be entered, which represents the measured pressure Patm. In any case, both when specifying by means of a constant, and when measuring of Patm, its value can be expressed in millimeters of mercury, kilograms per square centimeter or megapascals. To inform the program about the units of measurement used, they must be indicated via the parameter 0304 'Patm units of measurement', which takes one of three values: 0 (mm Hg.), 1 (kgf/cm²), 2 (MPa).

- The remaining settings for commercial calculations are the estimated time interval in minutes (F020), the calculation hour (F023), the calculation day (F022), the current date (F017), the current time (F018), the daylight saving time ban / permission (0303).
- Settings of up to 200 items of the display main menu with numbers 'N' from 00 to 199.
- Settings of up to 56 archives menu items with numbers 'N' from 00 to 55.
- Settings of up to 10 items of the display cyclic menu.

It is allowed to assign the displayed items not in a row, but with gaps, which will be automatically bypassed when displayed.

Values of the facility settings made by the manufacturer are shown in Table 3.2. The values of the remaining parameters are not defined.

No.	Parameter name	Value
0000	CAN-BUS network number	01
0004	CAN-BUS configuration	41E0
0005	RS-232 TTL network number	01
0006	RS-232 TTL interface descriptor	08
0007	RS-232 TTL frequency constant	FD00 (9600Hz)
02000207	250 Hz digital-data filter at the input is on	0
0300	Heat sink reference temperature	0.0
0306	Parameter number used as Тхи	0300
0301	Standard atmospheric pressure	745.0
0307	Parameter number used as Ратм	0301
0304	Ратм units of measurement	0 (mm Hg)
0303	Daylight saving time permission	0 (prohibited)
F017	Date	Current values are
F018	Time	set
F020	Calculation time interval	05
F023	Calculation hour	00
F022	Calculation date	01
F025	Service engineer password	FFFFFFF (no)

Table 3.2 – Facility configuration parameter values

3.2.5.4 For all **loaded** tasks, specific numerical values of the setting parameters (features of sensors, narrowing devices and pipelines, units of measurement, etc.) should be specified.

3.2.5.5 The output accumulated parameters of all tasks must be assigned initial values, usually zero. This can be done either by assigning directly to each parameter of number '0.0', or by thoroughly cleaning the area of the external RAM allotted for parameters of loadable tasks. The second method is more preferable and is performed by setting a single value of the bit parameter 0302 'clearing of information of the external RAM'. The TEKON-19 program performs cleaning of the entire external RAM area allocated for storing the parameters of loadable tasks, sets markers of all archive types, after which parameter 0302 is reset. The cleaning event is entered into the system event log.

3.2.5.6 In exceptional cases, it is possible to perform the initial start-up operation of the TEKON-19 program (except version 11). It is also performed by recording '1' into the bit parameter 0302, but only when the technological jumper is installed in the RS-232 TTL connector. A full cleaning of all TEKON-19 RAM, including the system area, is performed with a time setting of 23:59:00 and a conventional program development date on January 1, 2013. The initial launch fact is recorded in the system event log. Next, the jumper should be removed, and the time and date – reset.

3.2.5.7 In order for all accumulation, archiving and display tasks to start working normally after commissioning, it is sufficient after completing the commissioning works to perform the memory clearing operation in accordance with the instructions given in 3.2.5.5.

3.2.5.8 Upon completion of the configuration, the TEKON-19 programming cards can be issued, for example, using the 'Teleport' software.

3.2.5.9 The programmed TEKON-19 is ready for operation at the facility. If necessary, after completing the setup and putting the transducer into operation, a service engineer password can be set, which protects the task settings and commercial parameters from unauthorized changes.

4 USE OF THE TRANSDUCER

4.1 Reading parameters via CAN BUS

4.1.1 The main way to access the TEKON-19 parameters in operation is to exchange with a PC via the main digital CAN-BUS interface through the corresponding adapters produced by the manufacturer and the communication equipment of information communication channels using various software that support the controller exchange protocols (for example, the 'Teleport' software, dispatching software complex 'ISKRa', etc.). The ways of programs usage are set out in the documentation thereto and in their help functions (HELP).

4.1.2 When working in operation as part of an automated information collection system at the 'User' access level, all calculated values for all assigned tasks are displayed; their correction is impossible.

4.1.3 If after executing all the necessary connections and settings, the exchange program launched on the PC (for example, the 'Teleport' software) cannot establish the connection to a specified network address, the following actions should be performed:

4.1.3.1 Check the integrity of the cables, polarity of connections, reliability of the contacts, operability of the PC port, correct installation of the COM port number in the program and try communication again;

4.1.3.2 In the program, launch the function of searching for connected modules of the system by automatically searching for network numbers along the whole range from 00 to FF. If a response is received for one of the numbers, the cause of the malfunction is the incorrectly set network address in parameter 0000. Contacting the address found, replace it with the desired one.

4.1.3.3 If the search function did not find the connected module, it is possible that in the TEKON-19 the configuration parameter 0004, which sets the speed and information characteristics of the interface is distorted. In this case, turn off the TEKON-19 power supply and install a special plug in the RS-232 TTL connector (you can make it yourself from a cable plug by connecting pins 2 and 3 to each other). After powering on the TEKON-19, regardless of the condition of the memory addresses associated with the parameters 0000 and 0004, these parameters acquire the default values: address 00, configuration 41E0. By contacting the address 00 at 300 kBaud, correct the configuration settings.

4.1.3.4 After switching off the power again, <u>it is obligatory</u> to remove the plug, and after turning on the power, check again the connection with the address already set.

4.1.3.5 Network addresses and baud rates received by the TEKON program for execution can also be monitored via the display service menu (see 4.2.11).

4.2 Reading information from the front panel indicator

4.2.1 General

4.2.1.1 The TEKON-19 (except version 11) are equipped with an alphanumeric display located on the front panel with two control buttons. The display has 2 lines of 12 symbols each. Using the display, the user can view the condition of a number of parameters and their names, which have been pre-programmed to be read using a special 'menu'. The menu consists of three levels – the initial level (constant starting point), the intermediate level of titles and the level of operations. In turn, the level of operations consists of three parts: the main menu, the archive menu and the service menu. The overall menu structure is shown in figure 4.1. Partial correction of parameters displayed in the main menu is possible after performing some auxiliary operations in the service menu.

<u>NOTE</u>: The TEKON-19 in version 15 has its own unique menu structure, its description is provided in the OD to the measuring complex, which includes it. It is not described in this document.

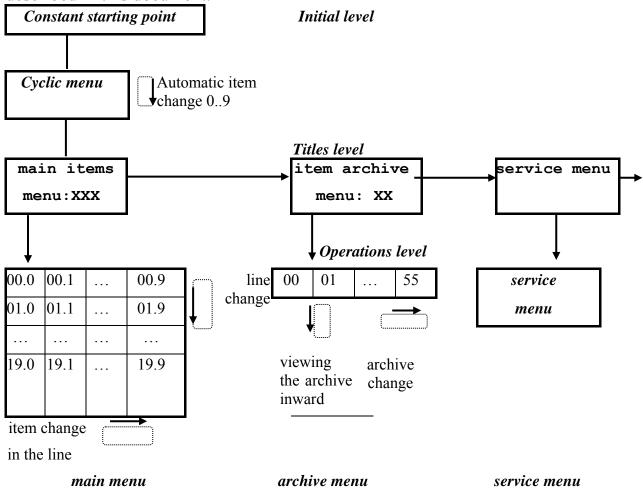


Figure 4.1 – Display menu structure

4.2.1.2 In general, the movement through the menu, i.e. transition from one menu item to another is performed by briefly pressing the control buttons on the front panel, labeled 'down arrow', ' $\mathbf{\nabla}$ ' and 'right arrow' ' $\mathbf{\triangleright}$ /. When pressing, the service symbol lights up in the first position of the bottom line (an analogue of the 'beeper' on the keyboards of many devices). At the level of operations, movement occurs only across active items (which displayed parameter code is different from FFxx) with automatic omission of inactive items (the displayed parameter code of the in which is equal to FFxx), both upwards and downwards in terms of the item number.

4.2.1.3 The TEKON-19 parameters, which have an internal representation in the form of float-point numbers, are usually assigned to the display in the menu. Display accuracy, i.e. the number of decimal places after the comma, is set when setting within the range from 0 to 4. The range of displayed numbers is from -10^6 to $+10^7$; otherwise, an overflow sign (\$) appears on the indicator. If the value of the displayed parameter is a special code 'not a number' (hexadecimal code FFFFFFF), the symbols of four asterisks (****) are displayed on the indicator. The '+' sign is not displayed. Numbers smaller than 10^{-7} in modulus are displayed to be strictly equal to zero, without decimal places. The number on the display is rounded upwards if the first discarded order is 5 or more.

4.2.1.4 If necessary, it is allowed to include in the main menu parameters that have an internal representation in the form of unsigned one- and two-bit integers within the range from 0 to 65,535, as well as bit parameters and hexadecimal numbers (one, two and four bytes). The principle is as follows:

- The parameter is displayed as a float-point number if its internal representation is 4 bytes long, and the 'display accuracy' is set within the range from 0 to 4 symbols.
- A parameter of any length (one-, two-, and four-byte) is displayed as a hexadecimal number (see tables B.1 and B.2) if the conditional 'display accuracy' for it is set to more than 4. If the display accuracy is set to FF, the multibyte number is displayed entirely and so that the 'high' byte is located on the left, for example, 8825FD13. If the accuracy is set within the range from 05 to FE, the multibyte number is displayed byte-wise and so that the lowest byte is located on the left, for example, 12 FD 25 88.
- A parameter of 1 or 2 bytes in length is displayed as an unsigned integer decimal number if the conditional 'display accuracy' for it is 4 or less. If the accuracy of 0 is set for a two-byte number, it is displayed entirely within the range from 0 to 65,535. The accuracy within the range from 1 to 3 determines the byte-wise number indication, with the high byte located on the left.
- The bit parameters are automatically recognized, for them the 'display accuracy' is not analyzed.

4.2.1.5 The main direction in the menu is the movement in the direction of increase of the item number. Using the right button ' \blacktriangleright ', you move along the line from left to right, using the left button ' \blacktriangledown ' – you move along the column from top to bottom or view the archive from the current moment deeper into the archive. To change the direction of movement, you must hold down the corresponding button for 2 seconds. The change of direction is performed in a similar way; a reverse transition is also possible. The current direction of movement is periodically displayed on the display in the form of arrow symbols upwards ' \uparrow ', downwards ' \downarrow ', to the right '>', to the left '<'. If there are no keystrokes within 256 seconds and also when entering the initial level of the menu, the direction of movement automatically switches to the main one (right and down).

NOTE: in the service menu, as well as after the start of correction (see 4.2.10), the possibility of changing the direction is blocked, only the main direction of movement remains.

4.2.1.6 Since the operations performed by the button depend on the duration of pressing, the menu item is changed not at the moment of pressing, but at the moment of releasing the button (except exit to the permanent menu item, see 4.2.2.1).

4.2.2 Initial menu level

4.2.2.1 The initial level of the menu is the original one at power-on of the TEKON-19. It is also transitioned to from any item in the menu by simultaneously pressing both buttons. The level consists of three consecutive automatic steps. The duration of the first and second steps is 5 seconds each, the duration of the third one is not limited.

4.2.2.2 At the first step, the general information identifying this transducer is displayed: in the top line: transducer version (02M, 03M, 04M, 05M, 06M, 10M), then –series and serial number in the form of an 8-digit number 'XXXXYYYY', where XXXX is the series, YYYY is the serial number. The bottom line shows the software version number as 'XX.YY' (for the algorithm set 03) or 'YY.XX' (for algorithm set 04), where XX is the version number of the basic software, YY is the version number of the calculation algorithm library (metrologically significant software), i.e. 03 or 04, for example:

06M	000	11234
vers	ion	82.03
06M	000	11234
вер	сия	82.03

05M	00014321
vers	ion 04.01
	00014321
вер	сия 04.01

4.2.2.3 During the second step, the standard name formed during the stage of creating a task queue, consisting of two lines of 12 characters each, is displayed, for example:

2 heating	2 трубы
pipes	отопление

This name is loaded along with the task queue. If the name is not loaded, i.e. the space allocated to it in the device's memory begins with two consecutive codes '00' or 'FF', then, the message <u>«очередь без имени»</u> ('queue without a name') is displayed. If no tasks are loaded, <u>«задач: HET»</u> ('tasks: NONE') is displayed in the top line, the bottom line is empty. If the queue is loaded with errors, the top line displays <u>«задач: OIIIИБКА»</u> ('tasks: ERROR'), the bottom line shows the queue identifier.

4.2.2.4. During the third step, the current date in the form of DD.MM.YY and the day of the week are displayed in the top line. The bottom line shows the current time in the form of HH:mm:ss and three service symbols, reflecting the current operating mode of the TEKON-19, for example:

18.05.15	Mon	18.05.15	пн
15:36:54	■*)	15:36:54	■*)

In the last position of the bottom line in the «<u>PAEOTA</u>» (OPERATION) mode, symbols of the left '(' and right ')' parenthesis are alternately displayed. The indication change occurs at the end of the next cycle of the TEKON-19 program account. In the «<u>OCTAHOB</u>» (STOP) mode, and also when the technological jumper is in place (see 4.1.3.3), the minus sign is constantly displayed in this position, i.e. '-'. For further information, see 2.3.10.10.

The asterisk '*' in the penultimate position of the bottom line indicates the absence of failures (zero state of the bit parameter of common failure 050E). If there are failures, instead of the asterisk the question mark '?' will be displayed. If there is at least one failure in the 0th bit of the parameter 0500 (see table 2.9), the question mark is lit permanently, which indicates critical failures of the equipment or the program of the TEKON-19 itself. If the 0th bit is clear, and there are signs of failure only in bit 1, the question mark flashes with a periodicity of 1 s.

The symbol in the previous position of the bottom line, other than a space, is displayed only if there are loaded tasks of two-rate electricity metering. During the main rate (daytime on working days) a transparent hexagon symbol is displayed. At the time of the discount rate at night, a black rectangle symbol is displayed. In the daytime on holidays and weekends the indicated symbols are displayed alternately with a periodicity of 1 second.

4.2.2.5 If there is a cyclic menu, the third step of the initial menu is automatically included in the cyclic menu. In this case, the duration of this step is 5 seconds.

4.2.3 Title level

4.2.3.1 Exit from the initial level of the menu to the intermediate level of titles occurs when pressing any button at any step of the initial item or cyclic menu. At the intermediate level, there are three items that represent the titles of the menu level of operations. Changing the item is done by pressing the right button, the items change in a loop.

4.2.3.2 The first two items of the title level «<u>меню основн</u>» ('main menu') and «<u>меню архивов</u>» ('archive menu') are intended for users. Under the title, the number of active items in the corresponding menu is displayed. If it is different from zero, pressing the down arrow key takes the menu to the performance level.

4.2.3.3 The last item of the title level «меню служебн» ('service menu') is the service one, and users, as a rule, should skip it by pressing the right button. Pressing the left button will take you to the service menu.

4.2.4 Main menu

4.2.4.1 The main menu contains 200 individual items with decimal numbers 'MN' from 000 to 199 inclusive, arranged in a table of 20 lines with 10 elements in each, as shown in figure 4.1. In this case, the two-digit number 'M' from 00 to 19 determines the line number, the 'N' number from 0 to 9 – the element number in the line. Placement of active items by numbers is selected during configuration and can be arbitrary. The availability of inactive items anywhere in any line, and the presence of entirely empty lines are allowed.

4.2.4.2 Entering the main menu is possible from the «меню основн» (main menu) item of the title level if the main menu contains at least one display parameter, which code is different from FFxx, and is performed by single pressing of the 'down arrow' button. The first item to be displayed will be the active item with the minimum number.

4.2.4.3 In all active points in the top line, the name line entered when creating the menu is displayed, and in the bottom line – the numerical value of the specified parameter with the specified accuracy. Periodically, every few seconds, and also after pressing any button or holding it for 2s, instead of the last six characters of the top line of the display, the number of the current menu item is displayed as the number of the menu line and the element number in the line, separated by a dot symbol, as well as the current direction of movement by buttons. For example, if the pressure in the return pipeline is 2.3467 kg/cm^2 , then at the exit to item 21, the display will take the following form:

Prev, kg/cm2 2.35	Prev, ↓02.1> 2.35
Робр, кг/см2 2.35	Робр, ↓02.1> 2.35

4.2.4.4 When in the main menu, the 'right arrow' button is used to move within the current line only (scrolling the line to the right or left, see 4.2.1.5). Pressing it once

brings up the next active item in the line. After the last active item of the line, it automatically returns to the first active item of the current line.

4.2.4.5 When in the main menu, the 'down arrow' button is used to change lines (scroll up or down the column, see 4.2.1.5). Pressing it once causes transition to the next line containing the active item in this column. After the last line, it automatically returns to the first active line.

4.2.4.6 The update of the parameter value indication in any menu item occurs initially at the moment of entering a new item, and then periodically from one to several times per second.

4.2.5 Archive menu

4.2.5.1 The archive menu contains 56 separate items with decimal numbers 'MN' from 00 to 55, inclusive, arranged in one line, as shown in figure 4.1. Allocation of active items by number is selected during configuration and can be arbitrary. The availability of inactive items anywhere in the line is allowed.

4.2.5.2, It is allowed to include in the archive menu the parameters of loadable tasks only, which are output for loaded tasks of archives of months (for 1 and 4 years), archives of days, archives of hours (for 16, 32 and 64 days), archives of user's events. In addition, the inclusion of the 'rigid' parameter 0904, which is the output for the system event log, is allowed. Other options and other types of archives are not allowed.

4.2.5.3 You can enter the archive menu from the «<u>меню архивов</u>» ('archive menu') item of the title level if there are at least one display parameter in the archive menu, the code of which matches the number of the output parameter of one of the loaded archive tasks or is equal to 0904, and it is performed by pressing the left button 'down arrow' once. The first active item with the minimum number is displayed.

4.2.5.4 When you exit to any menu item, following is indicated first of all:

- in the top line of the display the name entered when setting the item. Periodically, once every few seconds, instead of the last three characters in the top line, the number of the current menu item and the direction of movement are briefly displayed when changing the archive (see 4.2.1.5);
- in the bottom line of the display the type of archive automatically determined when displaying (<u>«месячный 12м»</u> 'monthly 12m', <u>«месячный 48м»</u> 'monthly 48m', <u>«суточный»</u> 'daily', <u>«часовой 16дн»</u> 'hourly 16d', <u>«часовой 32дн»</u> 'hourly 32d', <u>«часовой 64дн»</u> 'hourly 64d', <u>«события сист»</u> 'sys events', <u>«события»</u> 'events'), e.g.:

Q 135 school	Q 135 sc 25<
daily	daily
Q 135 школа суточный	Q 135 шк 25< суточный

4.2.5.5 Viewing the contents of an archive is performed by repeatedly pressing the 'down arrow'. Viewing is performed in the direction from the last moment of

P. 54

recording of information in this type of archive deeper into the archive, to its end, with a circular transition in time from end to beginning. Each pressing of the 'down arrow' button shifts the archive viewing point by one record unit of the corresponding archive type (by month, day or hour). The viewing direction can be reversed by holding down the 'down arrow' for 2 seconds according to 4.2.1.5.

4.2.5.6 When viewing any numeric archive, the bottom line displays the numerical value of the archive contents with a given accuracy, and the top line shows the viewing direction (depthward ' \downarrow ', backward ' \uparrow ', time and date of the archive. For the months archives there are the month number MM and the year YYYY, for the archive of days – the full date in the form of DD.MM.YYYY, for the archive of hours – the date in the form of DD.MM and the hour of recording (its beginning and end in the form of HH – HH+1), for example:

monthly	daily	hourly
04 2015 ↓	15.06.2015 ↓	15.09 16-17↓
182.6	45400.0	7.66
месячный	суточный	часовой
04 2015 ↓	15.06.2015 ↓	15.09 16-17↓
182.6	45400.0	7.66

It should be noted that the time and date of the archives are not really stored in the archives themselves and are formed only by the display program, based on the current time and date, the type of archives and the current viewing depth.

4.2.5.7 In the archive menu, the 'right arrow' button is used to change the displayed archive. Pressing it once at any current viewing depth of the current archive causes a transition to the beginning of the next active item (right or left – by long pressing the button according to 4.2.1.5) with an indication of the archive title according to 4.2.5.4 and automatically returning to the archive view mode. After the last active item, it automatically returns to the first active item.

4.2.5.8 Since the information stored in the archives is not updated during the viewing time, the display is generated for each menu item of the archives only at the moment when the button is pressed to change the archive, depth or viewing direction; then the value on the indicator is simply saved.

4.2.5.9 When viewing archives of events, the top line displays the date of the event in the form of DD.MM and the moment with an accuracy of minutes HH:mm. The bottom line on the right displays the content of the event as an 8-digit hexadecimal number. The code of the event type is displayed on the left in the system log (see table 2.13), and in the user archive – the current viewing depth relative to the last record marker, on a loop from 0 to 255. If less than 256 events are recorded, when accessing the blank area, the bottom line displays the message <u>«исчерпан»</u> ("no events").

4.2.6 Service menu

The last item of the intermediate level <u>«меню служебн»</u> ('service menu') is the service one. At the level of operations, it has at least two main points: <u>«состояние»</u> ('condition') and <u>«доступ»</u> ('access'), which let you know or change the current mode of operation of the transducer and set a password of the 'Service Engineer' level. The <u>«коррекция»</u> 'correction' item allows or prohibits the correction of parameters in the main menu. The <u>«настройки каналов</u>» item 'channel settings' displays network numbers and baud rates via the CAN and RS-232 TTL channels. Further, there is transition to three items of names and numerical characteristics of the task queue and the item about software integrity.

The transition from one item to another is carried out by pressing the right button. Transitions are made in circles, the movement is only from left to right, the reversal direction of movement is blocked.

4.2.7 «Состояние» ('Condition') item of the service menu

4.2.7.1 In the «состояние» ('condition') item, the current TEKON-19 mode of operation is displayed, i.e. in operation mode – «РАБОТА» ('OPERATION').

Condition	Состояние
operation	работа

No other actions in this item are RECOMMENDED for users. The exit from the item is made by pressing the right button (to the <u>«доступ</u>» 'access' item) or by simultaneously pressing both buttons (on the constant initial point).

4.2.7.2 The «<u>состояние</u>» 'condition' item allows changing the current mode of operation, i.e. to switch the TEKON-19 to the «<u>OCTAHOB»</u> (STOP) technological mode and back to the «<u>PAEOTA</u>» OPERATION mode. This may be required when the transducer is temporarily taken out of service, for example, for verification or repair, with the possibility to preserve the information accumulated in the transducer (see 2.3.11).

4.2.7.3 The first pressing of the left button takes the «<u>состояние</u>» 'condition' item to the next level, preparing the mode change to the opposite one:

condition	состояние
change?	изменить?

If there is no such need, press the 'right arrow' button, and you will go back to the service menu title level. If the mode really needs to be changed, click the 'down arrow' button.

This button starts the next level of the service menu, which requires entering the correct value for the service engineer password (see 2.3.10). Initially, the original password code consisting of eight points, the blinking cursor in the left position of the bottom line and the word 'yes' in the right part of the bottom line light up:

ent.	password:	ΒВ.	пароль:
		• •	да

Password entry rules:

- Each pressing of the left button changes the value of the digit in the position indicated by the cursor by one (the initial symbol of the point is replaced by a zero). All numbers are hexadecimal, changing upwards in a circle-like form: 0.1, ..., 9, A, .. F, 0, ...
- Each pressing of the right button shifts the cursor one position to the right. Shifting to the left is impossible, the reverse function does not work.
- If the transducer has not been supplied with a service engineer password, i.e. its real value is 00000000 or FFFFFFF, it is allowed to enter an arbitrary combination of numbers, as long as there is not a single point in all positions.
- After entering all eight digits, the cursor is immediately placed on the first character of the word «na» ('yes'). Each pressing of the left button changes the word «na» ('yes') to the word «Het» ('no') and back.

The result of pressing the right button depends on the word displayed after the password. If 'no', the mode change operation is not performed, the menu returns to the title level of the service menu. If 'yes', when the password is entered correctly, the mode change operation is actually performed, the menu goes to the result indication level. In the upper line, a new mode is displayed, in the lower line - the word 'executed', for example:

stop	останов
executed	исполнено

Mode change is accompanied by a notice in the system event log. Pressing any button returns to the title level of the service menu.

4.2.7.6 If the password is entered incorrectly, the message 'no access' is displayed. Pressing any button returns the menu to the title level of the service menu, and if necessary, all actions to change the mode of operation must be performed again.

4.2.8 The «<u>docmyn</u>» ('access') item of the service menu

4.2.8.1 If the transducer was not supplied with a service engineer password, i.e. its real value is 00000000 or FFFFFFF, the word «свободный» ('vacant') is displayed in the «доступ» ('access') section; otherwise – the words «с паролем» ('with password'), for example:

No other actions in this item are RECOMMENDED for users. Exit the item by pressing the right button (to the «состояние» 'condition' item), or by simultaneously pressing both buttons (to the constant starting point).

4.2.8.2 The «доступ» ('access') item allows you to change the current password value. This may be required when commissioning the transducer after precommissioning has been completed.

4.2.8.3 The first pressing of the left button takes the «доступ» 'access' item to the next level, preparing the possibility of checking and changing the password:

access	доступ
change?	изменить?

If there is no such need, press the 'right arrow' button, which will take you back to the title level of the service menu. If the password really needs to be changed, click the 'down arrow' button.

4.2.8.4 This button starts the next level of the service menu, which requires entering the correct value for the service engineer password (see 2.3.10). The indications and rules for entering the current password are similar to those described in 4.2.7.4.

4.2.8.5 The result of pressing the right button after entering the current password depends on the word displayed after the password. If <u>«HeT</u>» ('no'), the further operations are canceled, and you will be returned to the title level of the service menu. If <u>«<u>Ma</u>» ('yes'), but the password is entered incorrectly, the message <u>«Het доступа</u>» ('no access') is displayed, and any button returns to the title level of the service menu. If the password is entered correctly, this message is displayed:</u>

access	доступ
executed	исполнено

If you are still sure that you need to set a new password, press the left button. A flashing cursor appears in the first position of the bottom line, and the display takes the following form:

new	passv		новый		
XXXX	XXXX	yes	XXXXXX	XXX	да

Here, XXXXXXXX is the value of the current password. Using the left button to scroll the value of each digit, and the right – to change the position, enter the value of the new password and, without changing the word «<u>ma</u>» ('yes'), press the right button again. An indication appears indicating that the new password value has been accepted:

new	password	новый	пароль
executed		ИСПОЛН	нено

The fact of changing the password is noted in the system event log. Pressing any button returns to the header level of the service menu.

4.2.9 The «коррекция» 'correction' item of the service menu

4.2.9.1 In the «коррекция» ('correction') item, the current mode of the possibility of parameters' correction is displayed through the transducer's main menu, i.e. usually in the mode of operation – «запрещено» ('prohibited').

Correction	Коррекция
prohibited	запрещено

No other actions in this item are RECOMMENDED for users. Exit from the item is made by pressing the right button (to the «<u>состояние</u>» 'condition' item) or by simultaneously pressing both buttons (to the constant starting point).

4.2.9.2 In principle, the «коррекция» ('correction') item allows permitting or prohibiting the correction of float-point parameters included in the display of the main menu and having an access level not higher than the "Service Engineer". This may be required for the rapid change of some settings without using a PC.

4.2.9.3 The first pressing of the left button takes the «коррекция» 'correction' item to the next level, preparing the ability to verify the password:

correction	коррекция
change?	изменить?

If there is no need to change the correction mode, press the 'right-arrow' button, it will take you back to the title level of the service menu. If you really need to change the mode, click the 'down arrow'.

4.2.9.4 This button starts the next level of the service menu, which requires entering the correct value for the service engineer password (see 2.3.10). The indication and rules for entering the current password are similar to those described in 4.2.7.4.

4.2.9.5 The result of pressing the right button after entering the current password depends on the word displayed after the password. If «<u>нет</u>» ('no'), further operations are canceled, and return to the title level of the service menu takes place. If «<u>да</u>» ('yes'), but the password is entered incorrectly, the message «<u>нет доступа</u>» ('no access') is displayed, and any button returns to the title level of the service menu. With a correctly entered password, a new state of the correction mode is displayed, for example:

allowed!	разрешена!
executed	Исполнено

4.2.9.6 When the correction is allowed, a special internal marker is installed in the software. Further, proceed as described in 4.2.10.

4.2.10 Parameter correction procedure

4.2.10.1 It is possible to correct the value of only single parameters that have a float-point representation and recording access level not higher than the "Service Engineer". The corrected modulo number may not exceed 1,000,000, after the decimal point 4 decimal places. The real accuracy of the number representation does not exceed 7-8 decimal digits, i.e. for large numbers the fractional part will be introduced with a noticeable error. In order to correct, perform the operations described below.

4.2.10.2 Through the service menu, allow the correction in accordance with the instructions of 4.2.9. Double-click the 'right arrow' to go to the title level of the main menu. Going through the constant starting point by pressing two buttons does not make sense, because this resets the set indication of the correction permission.

4.2.10.3 Enter the main menu and go to the display item of the desired parameter. The reversal of the movement direction using the buttons when the correction is enabled is blocked, movement is only possible in the main direction. Please note that, if the correction is enabled in all the menu items that contain parameters that can be adjusted (see 4.2.10.1), together with the item number and the direction of movement, an exclamation point symbol is periodically displayed, for example:

Ратм	!↓01.3>
735	.00

After selecting the desired item, press the left button for a long time (at least 2 seconds). The beginning of the correction is indicated by a change in indication. The word «коррекция» ('correction') is displayed in the top line, and the value symbols appear in the bottom line in all positions of the line, including the sign of the number, non-significant zeros before the number, all 4 decimal places after the comma and the blinking cursor in the first position of the bottom line:

correction	коррекция
+000735.0000	+000735.0000

NOTE: if the original modulo number was equal to or exceeded 1,000,000, it would appear on the indicator as "+999999.9999" and can be corrected starting from this value.

Correction rules:

- Each short pressing of the left button changes the value of the digit in the position marked by the cursor by one. All digits are decimal, changing in the direction of increasing in a ring-like manner: 0.1,.., 9.0,... At the position of the number sign, the '+' symbol changes to '-', and vice versa.
- Each short pressing of the right button shifts the cursor one position to the right. The decimal point position is bypassed automatically. Shifting to the left is impossible, the reverse function does not work, but when the extreme right position is reached and the right button is pressed, the cursor moves to the

leftmost position again, which allows correcting of the number in several passes if necessary.

After completing the correction, press the left button for a long time (at least 2 seconds). The corrected parameter will be copied from the indicator to the microprocessor memory, which is accompanied by a brief indication on the indicator of the following message:

Correction	коррекция
recording in progress	идет запись

After that, the original indication display shown in 4.2.10.3 is restored, but with the new value of the corrected parameter.

4.2.10.7 If there is another parameter that requires correction, go to the menu containing the item and adjust it according to 4.2.10.4 - 4.2.10.6.

4.2.10.8 If due to any reason it is necessary to cancel the started correction (i.e., being in 4.2.10.5), press the right button for a long time, more than 2 seconds. The correction process of this parameter will be interrupted, preserving the original value of the parameter and the possibility of performing correction of other parameters.

4.2.10.9 As in case of parameters recording via serial exchange channels, the fact of correction is noted in the system event log according to table 2.10, if the recording access level to the corrected parameters was the "Service Engineer".

4.2.10.10 After completing the correction of all the required parameters, remove the sign of permission of correction in one of the following ways:

- Simultaneous pressing of two buttons with exit to the permanent menu item (recommended).
- Prohibition of correction through the service menu (possible, but inconvenient).
- Power switching.
- No button pressing for 256 seconds automatically prohibits the correction.

4.2.11 The «настройка каналов» 'channel setting' item of the service menu

The item does not have a special title, the current settings of the communication channels are immediately displayed, i.e. network addresses in hexadecimal form and exchange rate in kilobauds for example:

CAN	01	300	CAN	01	300
RS	0E	9.6	RS	ΟE	9.6

The top line refers to CAN-BUS, the bottom line to RS-232 TTL. Not set values of parameters, but real channels settings are displayed, taking into account, for example, the installed technological jumper.

4.2.12 Indication of names and numerical characteristics of the task queue

4.2.12.1 Consists of three items:

- The standard task queue name. Fully repeats the indication of the second menu step in the same way as 4.2.2.4.
- An arbitrary object or queue name assigned by the user during configuration and containing two lines of 12 symbols each. If the name is not assigned, i.e. the first two characters of the first line have codes '00' or 'FF' in the device memory, then the message 'object without a name' is displayed.
- Numerical characteristics of the task queue, i.e. their number and code, similar to 4.2.2.3.

If at the moment the TEKON-19 is functioning without failures, i.e. all binary digits of the parameter 0500 (or 0516) are cleared (see table 2.11), the display of the standard or user name lasts indefinitely. If there are failures, a failure message is periodically displayed according to table 4.1.

If there are several failures of different priority simultaneously, only one message is displayed, the conditional priority of which has a lower numerical value.

This indication due to its blinking should only attract the attention of the attendants to the occurrence of failures. For more detailed diagnostics, you can view the system event log or, by including the parameter 0500 or 0516 in the main menu, view its condition.

Conventional	Indication	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
priority		Byte	e 0 o	f pa	ram	eter	050	0		By	yte 1	of	para	imet	er 0	500	
1	Нет счета							+						+	+		
	(No account)																
2	Отказ прибора			+	+								+				
	(Instrument failure)																
3	Отказ настроек	+	+			+	+				+	+				+	
	(Settings failure)																
5	Отказ алгоритмич																+
	(Algorithm failure)																
		Byte	2 o	f the	e pai	am	eter	051	6					-			
4	Большое число				+	+											
	(Large number)																

Table 4.1

4.2.13 The menu item «КС метрол ПО» ('KS Metrol Software') allows assessing the software integrity. The display type is as follows:

KS Metrol	Software	КС метрол ПО
xx00mmmmm	mmm	x x 0 0 mmmmmmmm

Indication in the bottom line is hexadecimal. The last eight characters 'mmmmmmm' indicate the value of the CRC32 checksum of the metrologically significant part of the program. The first two characters 'xx' are service ones, the next

two characters reflect the condition of bit 2 of parameter 0516 (see 2.3.8.1) and are displayed as '00' when the program is operational.

4.2.14 The following are the menu items that allow you seeing the information on the MC. If the TEKON-19 frequency MC and pulse number MC are present in this version, the following message (for example) can be seen on the indicator:

Frequ	lency,	Ηz	Част	ота, Гц
FO	23,2	2	FO	23,2

F0 – frequency and pulse number MC No. 0.

View all MC by pressing the 'down arrow'.

When you press the 'right arrow' button, you can go to view the resistance values and then the current rate (if there are analog MC in this version of the TEKON-19). You can also view all the MCs by pressing the 'down arrow'.

The display type is as follows:

 Resista	ance,	Ohm	Сопрот	гивл,Ом
ΤO	104,7	7	ТО	104,7

Current rate, mA	Сила	тока,мА
IO 16,5	ΙO	16,5

T0 – resistance MC No. 0, I0 – current rate MC No. 0.

The last menu item that can be accessed by pressing the 'right arrow' button is the number of pulses per MC. Viewing of all the MCs is similar.

The display type is as follows:

Num.	pulses	Кол	импульс
FO	127	FO	127

4.2.14 Cyclic menu

4.2.14.1 In the TEKON-19, it is possible to assign a cyclic menu, in which each parameter from the specified list is displayed alternately with an automatic change in time.

4.2.14.2 The list can include up to 10 parameters. The assignable parameters must meet the same requirements as the main menu parameters (see 4.2.4). Indication rules are also similar to those of the main menu.

4.2.14.3 Each assigned parameter from the list is displayed for 5 seconds. In addition, each cycle begins with a transition to the third step of the initial menu item, where the current time and date are displayed (see 4.2.2.5). Thus, if there is an assigned parameter in the list N + 1, the frequency of indication of all parameters will be 5 * (N + 1) seconds.

4.2.14.4 The cyclic menu is entered automatically after all the steps of the initial indication have been completed, if at least one parameter is specified in the cyclic menu. Time of being in a cyclic menu is indefinite. Exit is possible either to the title level by pressing any button or to the level of the starting point by simultaneous pressing of two buttons.

5 TECHNICAL SERVICE

5.1 Maintenance and periodic verification

5.1.1 During operation, the TEKON-19 is subject to periodic verification. Verification is carried out in accordance with the requirements of Section 6. The results of periodic verification and initial verification after repair are recorded in the corresponding print form.

5.1.2 It is necessary to follow recommendations of 2.3.11.3 before disconnecting the transducer for verification, as well as before its commissioning after the verification. The transducer is mounted and dismounted according to the requirements of 3.1.

5.1.3 It may be necessary to replace the stationary backup battery after long-term storage or service with a power outage of a total duration exceeding 10 months. A battery discharge below an acceptable level may lead, amongst others, to resetting the clock, distorting the event log and accumulated archival information.

Maintenance in order to determine the level of charge and, if necessary to replace the battery, is performed at the manufacturer site or authorized service centres.

5.2 Repair

5.2.1 The TEKON-19 repair is performed at the manufacturer site or authorized service centres.

5.2.2 The transducer should be sent to the repair complete with the filled service log, a cover letter describing the fault following no particular form, **without terminal connectors**, as well as fixing and other elements not included in the scope of supply.

5.2.3 The preservation of settings and accumulated information in the device memory <u>is not guaranteed</u> in case of repair. It is necessary to carry out precommissioning activities before commissioning after repair.

5.2.4 It is necessary to carry out the initial verification in accordance with the requirements of section 6 after repair.

5.2.5 Information on each repair performed, factory default settings after the repair and service centre warranties are recorded in the service log and attached repair certificates.

6 VERIFICATION

This section describes the procedure for initial, scheduled and unscheduled verification.

The procedure applies to the TEKON-19 calculation and measurement transducers of **all versions and modifications, regardless of the manufacturing date.**

Not all MC and (or) not in all subranges of measurements are allowed to be verified in accordance with the statement of the TEKON-19 owner, indicating the information about the scope of performed verification in the verification certificate and (or) device certificate.

(Revision, Amendment No. 3).

6.1 It is necessary to perform operations specified in Table 6.1 when performing the TEKON-19 verification.

When receiving negative results on any verification operation, the verification is stopped and the TEKON-19 is declared unfit for operation.

6.2 If the TEKON-19 was manufactured after 01.10.07, the interval between verifications is 4 years, for other transducers it is 2 years.

(Revision, Amendment No. 3).

Name of operation	Para. No.	1	ons during cation
	INO.	initial	scheduled
Visual inspection	6.7.1	yes	yes
Testing	6.7.2	yes	yes
Determination of the insulation resistance and strength	6.7.3	yes	no
Checking the measurement range and determining the absolute error of the resistance MC	6.7.4	yes	yes
Checking the measurement range and determining the absolute error of the current rate MC	6.7.5	yes	yes
Checking the measurement range and determining the absolute error of the frequency and pulses MC	6.7.6	yes	yes
Determination of the watch rate (relative error in the time measurement)	6.7.7	yes	yes
Verification of the software identity *)	6.7.8	yes	yes
*) - not performed for transducers with manufactur	ring date b	efore 28.10.	2013

Table 6.1 – List of verification operations

(Revision, Amendment No. 3).

6.3 Verification means

6.3.1 The following means are used during verification:

- direct current standard, category 3, within the range of values from $1 \cdot 10^{-3}$ A to $2 \cdot 10^{-2}$ A;
- working resistance standard, category 3, within the range of values from 50 Ohm to 4 kOhm;
- time standard within the range of values from $1.8 \cdot 10^2$ seconds to $1 \cdot 10^4$ seconds, standard of frequency within the range of values from 0.1 Hz to 1,000 Hz;
- M-67 type barometer, measurement range is from 600 to 800 mm Hg, accuracy of 1 mm Hg.;
- TL-1 thermometer, range: from 0 to 50°C, scale division is 1°C.
- Time server of FSUE 'VNIIFTRI' time servers group (ntp1.vniiftri.ru, ntp2.vniiftri.ru or ntp3.vniiftri.ru);

(Revision, Amendment No. 3).

6.3.2 It is allowed to use similar means of verification, which ensure the determination of the TEKON-19 metrological characteristics with the required accuracy.

6.4 Safety requirements and qualifications of verification officers

6.4.1 Only persons who have studied these procedures, TEKON-19 operating manuals and the verification tools, who are trained as measuring device verification officers and work in an organization accredited for verification are allowed to perform verification.

(Revision, Amendment No. 3).

6.4.2 During the TEKON-19 verification it is necessary to comply with the safety requirements stipulated by the Order of the Ministry of Labor of Russia of 07.24.2013 No. 328n 'On Approval of Rules on Occupational Safety during Operation of Electrical Installations', GOST 12.2.007.0-75, GOST 12.1.019-2009, GOST 12.2.091-2012, as well as the safety requirements specified in the TEKON-19 technical documentation, verification tools and auxiliary equipment.

6.5 Verification conditions

6.5.1 Verification is performed under the following conditions:

•	ambient temperature, °C	$20 \pm 5;$
•	relative humidity, %	30 - 80;
•	atmospheric pressure, kPa (mm Hg)	84 - 106.7 (630 - 795);
•	voltage supply, V	24 ± 2.5 .

6.5.2 The room should be free of dust, smoke, gases and vapours polluting equipment over the maximum allowable concentration for the radioelectronic industry.

6.5.3 The vibration level in the verification room should not exceed the norms established in the standards or technical specifications for specific types of verification means.

6.5.4 Connection of resistor banks to the TEKON-19 terminals is carried out with copper untinned wires.

6.6 Preparation for verification

6.6.1 Means of verification and the TEKON-19 are prepared for operation in accordance with the operational documentation of these means. Before verification, the TEKON-19 is warmed up for 30 minutes minimum.

6.6.2 The setting of the TEKON-19 parameters is checked in accordance with Table 3.2 and the display of the measured parameters in the display menu of all MCs (resistance, current, frequency) is checked according to the guidelines of section 3 hereof. If necessary, adjust the parameters and the display menu using the 'Teleport' software (it is supplied on a CD with the TEKON-19), guided by the description and help functions of the program.

(Revision, Amendment No. 3).

6.7 Verification performance

6.7.1 Visual inspection

During visual inspection of the TEKON-19, it is required to check the marking, availability of necessary inscriptions on the outer panel, scope of supply, absence of mechanical damage. The TEKON-19 that have unsatisfactory fixation of connectors, gross mechanical damage to the external parts and other damage are not allowed for further verification.

6.7.2 Testing

6.7.2.1 The serviceability of the operating and display controls, compliance of the display of the transducer service information (serial number, software algorithms version number) with the data given in the operating documentation and on nameplate of the rear panel are checked during testing, and also the possibility of displaying of all the TEKON-19 parameters and service information programmed in the display menu is checked.

6.7.2.2 Testing is considered to be successful if the transducer service information, all names and parameter values are correctly displayed on the front panel display, there is no indication of critical failures, programming errors and emergency situations.

6.7.3 Determination of insulation resistance and strength

6.7.3.1 Determination of the resistance and dielectric strength of the insulation is carried out between the measuring circuits terminals and the transducer housing

according to GOST R 52931. The measurement results are recorded in the protocol of verification following no particular form.

6.7.3.2 The insulation of the measuring electrical circuits with respect to power supply circuits shall withstand a test voltage of almost sinusoidal shape with amplitude of 500 V, frequency from 45 to 65 Hz under normal climatic conditions for 1 minute, the insulation resistance shall be 20 MOhm minimum.

6.7.4 Checking the measurement range and determining the absolute error of the resistance MC

6.7.4.1 Make a wiring diagram as shown in Figure 6.1.

6.7.4.2 The resistance values ($Ro\delta p_{ij}$) are sequentially set at five points on the resistor bank for each of the measurement ranges for two MC selected in accordance with the requirements of Recommended Practice MI 2539, and at three points for the other MC (resistance values are selected from Table 6.2). Counting of the measured signal parameters ($R\mu_{3}M_{ij}$) is made on the TEKON-19 front panel display or through the CAN-BUS interface.

Where i is the point number of the input signal range,

j is the number of MC of this type,

<u>ATTENTION!</u> The resistance values within the range of 1,000 - 4,000 Ohm are set only for transducers manufactured after 01.10.07.

(Revision, Amendment No. 3).

Measurement results are recorded in the verification report following no particular form.

	Checkpoints of resistance, Ohm		
Measuring ranges, Ohm	for two channels selected in accordance with MI 2539	for other channels	
50 - 250	50, 100, 150, 200, 250	50, 150, 250	
250-1,000	300, 500, 700, 900, 1,000	300, 700, 900	
1,000 - 4,000	1,500, 2,000, 2,500, 3,000, 4,000	1,500, 2,500, 4,000	

6.7.4.3 The absolute error of the resistance MC shall be within the following intervals:

- in the resistance range of 50 250 Ohm
- in the resistance range exceeding 250 1,000 Ohm

 ± 0.04 Ohm; *)

- ± 0.2 Ohm;
- in the resistance range exceeding 1,000 4,000 Ohm ± 2 Ohm.

* for transducers manufactured before 01.10.07 \pm 0.05 Ohm

(Revision, Amendment No. 3).

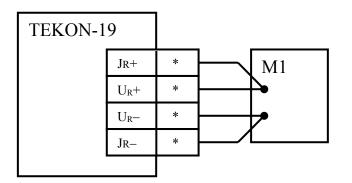


Figure 6.1 - Wiring diagram of the verification means during the verification of the resistance MC

M1 - resistor bank, *- terminal numbers as per Table 3.1

6.7.5 Checking the measurement range and determining the absolute error of the current rate MC

6.7.5.1 Make a wiring diagram as shown in Figure 6.2.

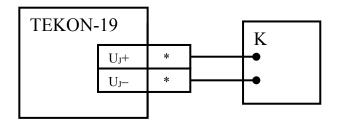


Figure 6.2 - Wiring diagram of the verification means during the verification of the current rate MC. K – current rate, *– terminal numbers as per Table 3.1

6.7.5.2 The current rate values $(Jo\delta p_{ij})$ are sequentially set on the current rate calibrator at five points for each of the measurement ranges (1, 2, 3, 4, 5 mA and 6, 8, 10, 15, 20 mA) for two MC selected in accordance with the requirements of Recommended practice MI 2539, and at three points (1, 3, 5 mA and 6, 10, 20 mA) for the other MC. Counting of the measured signal parameters (Jm_{ij}) is made on the TEKON-19 front panel display or through the CAN-BUS interface.

Where i is the point number of the input signal range,

j is the number of MC of this type

Measurement results are recorded in the verification report following no particular form.

6.7.5.3 The absolute error of the current rate MC shall be within the following intervals:

—	in the current rate range of 0 - 5 mA	± 0.005 mA;
—	in the current rate range exceeding $5 - 20 \text{ mA}$	± 0.02 mA.

6.7.6 Checking the measurement range and determining the absolute error of the frequency and pulses MC

(Revision, Amendment No. 3).

6.7.6.1 Make a wiring diagram as shown in Figure 6.3.

Set the jumpers for selecting the MT type to the position corresponding to the MT with an active output signal as shown in Figure 3.3, C).

6.7.6.2 Reset the frequency indicator and set it to measure the pulse repetition rate. The calculation time of frequency indicator for transducer manufactured before 30.10.2015 is set to 100 seconds minimum and for other transducers it is 10 seconds minimum. It is allowed to use the frequency standard without a frequency meter, if it provides the determination of the TEKON-19 metrological characteristics with the required level of accuracy.

(Revision, Amendment No. 3).

6.7.6.3 On the pulse generator, set the pulse duration of (500 ± 50) μs with an amplitude of 10 V and the pulse frequency at five points for each of the measurement ranges (100, 300, 500, 800, 1,000 Hz) for two MCs selected in accordance with the requirements of Recommended practice MI 2539, and at three points (100, 500, 1,000 Hz) for other MCs. Counting of measured signal parameters (FизM_{ij}) is made on the TEKON-19 front panel display or through the CAN-BUS interface. The values of the input signal frequency (Foбp_{ij}) are measured using the frequency indicator. In case of using a frequency standard without the frequency indicator and the values specified in this standard are used as (Foбp_{ij}).

Where i is the point number input signal range,

j is the number of MC of this type

Measurement results are recorded in the verification report following no particular form.

(Revision, Amendment No. 3).

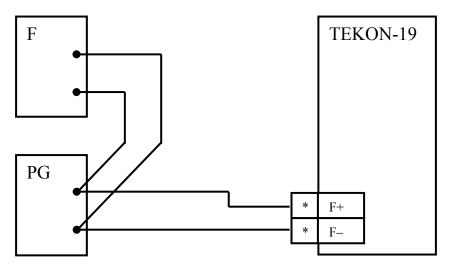


Figure 6.3 - Wiring diagram of the verification means during the verification of the frequency and pulses MC

F – frequency indicator in the pulse counting mode,

PG – pulse generator,

*- terminal numbers as per Table 3.1

6.7.6.4 The absolute error of the MC when measuring frequency shall be within the interval of ± 0.2 Hz.

T10.00.60 PЭ Rev. 05.07 of 27.03.18

6.7.6.5 The absolute error of the MC when measuring the number of pulses shall be within the interval of ± 1 pulse.

6.7.7 Determination of the watch rate (relative error in the time measurement)

6.7.7.1 The watch rate is determined by the TEKON-19 indicator or via CAN-BUS interface.

6.7.7.2 When determining the watch rate using the TEKON-19 indicator the indication of time is set on the TEKON-19 front panel display, the indication of the PC clock is set on the PC display, and the PC clock is set according to the standard (time server of the <u>FSUE 'VNIIFTRI'</u> time server group (ntp1.vniiftri.ru, ntp2.vniiftri.ru or ntp3.vniiftri.ru) using the NTP protocol).

6.7.7.3 When determining the watch rate via CAN-BUS interface, perform periodic reading of the parameter No. F018 'Time' via the interface, and waiting for its change, note the readings of the clock standard.

At the same time, the required time between the start and end of measurements is determined by τ_{H3M} , which ensures the TEKON-19 watch rate determination with the required accuracy depending on the response time to the 'Time' parameter change received from the TEKON-19 via the CAN-BUS interface, but not less than 180 seconds.

6.7.7.4 When determining the watch rate using PC with the time server, the time between the start and end of measurements $\tau_{{}_{H3M}}$ is selected within the range of (16 - 24) hours.

6.7.7.5 The initial value τ_{Hay} of the TEKON-19 clock correction is recorded as the difference between the readings of the TEKON-19 clock and the standard (PC clock) in seconds.

6.7.7.6 After τ_{H3M} time, re-conduct the operations according to 6.7.7.2 (6.7.7.3).

6.7.7.7 Record the final value $\tau_{\text{кон}}$ of the TEKON-19 clock correction in the verification report as the difference between the readings of the TEKON-19 clock and the standard (PC clock) in seconds.

6.7.7.8 It is allowed to conduct verification under 6.7.7 simultaneously with other verifications.

6.7.7.9 Daily watch rate shall be within the interval of ± 9 seconds.

6.7.7.10 The nominal error in the time measurement is determined only for transducers manufactured before 31.10.2013, the obtained value shall be within the interval of ± 0.01 %.

(Revision, Amendment No. 3).

6.7.8 Verification of the software identity

P. 72

Verification of the TEKON-19 software identity is carried out by comparing the software identification data on the TEKON-19 display with the identification data specified in table 2.2.

The results are considered to be positive if the software identification data corresponds to those specified in table 2.2.

6.8 Processing of measurement results

6.8.1 Processing of measurement results when determining the absolute error of the resistance MC

6.8.1.1 Calculate the absolute error value using the formula:

 $\Delta R_{j} = \max_{i} \left\{ (|R_{U3M_{ij}} - Ro\delta p_{ij}|) \right\}$ (6.1)

6.8.1.2 Check on inequation compliance:	
in the resistance range of $50 - 250$ Ohm	$\Lambda R_{i} \leq 0.04 \text{ Ohm}^{(*)}$ (6.2)

	$\Delta n_{\rm j} = 0.010$ mm,	(•)
in the resistance range exceeding 250 – 1000 Ohm	$\Delta R_j \leq 0.2 \text{ Ohm};$	(6.3)
in the resistance range exceeding 1000 – 4000 Ohm	$\Delta R_j \leq 2 \text{ Ohm.}^{*)}$	(6.4)

* the inequation compliance (6.4) for the transducers manufactured before 01.10.07 is not checked, and the inequation (6.2) has the following form:

$$\Delta R_i \le 0.05 \text{ Ohm}; \tag{6.5}$$

(Revision, Amendment No. 3).

6.8.2 Processing of measurement results when determining the absolute error of the current rate MC

6.8.2.1 Calculate the absolute error value using the formula:	
$\Delta J_j = \max_i \{(Jизм_{ij} - Joбp_{ij})\}$	(6.6)

6.8.2.2 Check on inequation compliance:		
in the current rate range of 0 - 5 mA	$\Delta J_j \le 0.005 \text{ mA};$	(6.7)
in the current rate range exceeding $5 - 20 \text{ mA}$	$\Delta J_j \le 0.02 \text{ mA};$	(6.8)

6.8.3 Processing of measurement results when determining the absolute error of the frequency and pulses MC

6.8.3.1 Calculate the absolute error value of the frequency MC using the formula: $\Delta F_{j} = \max_{i} \{ (|F_{M3M_{ij}} - Fo\delta p_{ij}|) \}$ (6.9)
6.8.3.2 Check on inequation compliance:

$$\Delta F_i \le 0.2 \text{ Hz} \tag{6.10}$$

6.8.3.3 Calculate the absolute error value of the MC when measuring the number of pulses using a frequency indicator using the formula (6.11), and in case of using the frequency standard without a frequency indicator (pulse generator) using the formula (6.12):

$$\Delta N_j = (\Delta F_j - 1/\tau_{\rm H}) \cdot \tau_{\rm T}, \qquad (6.11)$$

$$\Delta N_{j} = \Delta F_{j} \cdot \tau_{T}, \qquad (6.12)$$

Where

 τ_{Ψ} is counting time of the frequency meter in seconds,

 τ_{T} is counting time of the TEKON-19 equal to 10 seconds when measuring the frequency for transducers manufactured after 30.10.2015 and for other transducers it is 8 seconds.

6.8.3.4 Check on inequation compliance:

$$\Delta N_j \le 1 \text{ pulse} \tag{6.13}$$

(Revision, Amendment No. 3).

6.8.4 Processing of measurement results when determining watch rate and nominal error when measuring the time

6.8.4.1 Calculate the watch rate value in seconds using the formula:

$$\Delta(\tau) = (\tau_{\text{KOH}} - \tau_{\text{Hay}}) \cdot 24 \cdot 3600 / \tau_{\text{H3M}} , \qquad (6.14)$$

where τ_{H3M} is the time between the start and the end of measurements in seconds.

6.8.4.2 The nominal error when measuring the time, %, for the transducers manufactured before 31.10.2013, is calculated using the formula:

$$\delta(\tau) = (\tau_{\text{KOH}} - \tau_{\text{Hay}}) \cdot 100 / \tau_{\text{M3M}}$$
(6.15)

6.8.4.3 Check on inequation compliance:

$$|\Delta(\tau)| \le 9 c \tag{6.16}$$

Check on inequation compliance for the transducers manufactured before 31.10.2013:

$$|\delta(\tau)| \le 0.01 \%$$
 (6.17)

(Revision, Amendment No. 3).

6.8.5 The verification results are considered to be positive if the requirements of 6.8.1.2, 6.8.2.2, 6.8.3.2, 6.8.4.3 are met.

6.9 Registration of the verification results

6.9.1 In case of positive verification results, the TEKON-19 is recognized as serviceable and a verification certificate is drawn up in accordance with the Order of the Ministry of Industry and Trade No. 1815 of 02.07.2015, or the results are recorded in the device certificate (service log).

6.9.2 In case of negative verification results, the TEKON-19 is recognized as unserviceable and a notice of unworthiness indicating the reasons is issued in accordance with the Order of the Ministry of Industry and Trade No. 1815 of 02.07.2015, or the results are recorded in the device certificate (service log).

(Revision, Amendment No. 3).

P. 74

7 TRANSPORTATION AND STORAGE

7.1 Transportation

Transportation of the packed TEKON-19 should be carried out in covered vehicles by all means of transportation, by air transport in sealed and heated compartments only in accordance with GOST R 52931.

7.2 Storage

The TEKON-19 storage should comply with the OZh4 storage conditions according to GOST 15150.

8 DISPOSAL

8.1 The TEKON-19 calculation and measuring transducer does not contain precious metals and materials posing hazard to life.

8.2 The TEKON-19 disposal is performed separately by groups of materials: plastic elements, metal fasteners.

ANNEX A - List of regulatory and technical documents referenced in the Operation Manual

GOST R 52931-2008	Technological processes monitoring and control instruments. General
ГОСТ Р 52931-2008	specifications.
GOST 15150-69	Machines, instruments and other industrial products. Modifications for
ГОСТ 15150-69	different climatic regions. Categories, operating, storage and transportation conditions in terms of ambient climatic condition influence.
GOST 14254-2015	Degrees of protection provided by enclosures (IP Code).
ГОСТ 14254-2015	
GOST 12.2.007.0-75	Occupational safety standards system. Electrical equipment. General
ГОСТ 12.2.007.0-75	safety requirements.
GOST 2.601-2013	Unified system for design documentation. Operational documents.
ГОСТ 2.601-2013	
GOST 6651-2009	Resistance temperature transducers. General specifications.
ГОСТ 6651-2009	
GOST R 8.740-2011	State system for ensuring the uniformity of measurements. Flow rate
ГОСТ Р 8.740-2011	and quantity of gas. Measurements procedure by turbine, rotary and vortex flow meters and gas meters.
GOST 8.586.5-2005	Measurements of liquids and gases flow rate and quantity by means of
ГОСТ 8.586.5-2005	orifice instruments. Principle of the method of measurements.
GOST 30319.1-2015	Natural gas. Methods of calculation of physical properties. General
ГОСТ 30319.1-2015	statements.
GOST 30319.2-2015	Natural gas. Methods of calculation of physical properties. Calculation
ГОСТ 30319.2-2015	of physical properties on the basis of information on density under standards conditions and nitrogen and carbon dioxide contents.
GOST 30319.3-2015	Natural gas. Methods of calculation of physical properties. Calculation
ГОСТ 30319.3-2015	of physical properties on the basis of information on component composition.
GOST R	Telecontrol equipment and systems. Part 5.
IEC 870-5-1-95 ГОСТ Р МЭК 870-5-1-95	Transmission protocols. Section 1. Transmission frame formats.
GOST R EN 1434-4-2011	Heat meters. Type approval tests.
ГОСТ Р ЕН 1434-4-2011	

MI 2412-97	State system for ensuring the uniformity of measurements.
МИ 2412-97	Recommended Practice. Piped Hot Water Heat Supply Systems. Equations for Measurement of Thermal Energy and Quantity of Heat Transfer Agent.
MI 2451-98	State system for ensuring the uniformity of measurements.
МИ 2451-98	Recommended Practice. Steam Pipe Heat Supply Systems. Equations for Measuring Thermal Energy and Quantity of Heat Transfer Agent.
MI 2539-99	Measuring channels of controllers, measuring and computing, control,
МИ 2539-99	software and hardware systems. Verification methods.
MI 3173-2008	State system for ensuring the uniformity of measurements.
МИ 3173-2008	Recommended Practice. Liquids and gases flow rate and quantity. Principle of the method of measurements using TORBAR averaging pressure tubes.
MI 3213-2009	State system for ensuring the uniformity of measurements. Gas flow
МИ 3213-2009	rate and quantity. Principle of the method of measurements using ultrasonic flow transducer.
(Revision, Amendment	<i>No. 3).</i>
MI 2667-2011	State system for ensuring the uniformity of measurements.
МИ 2667-2011	Recommended Practice. Liquids and gases flow rate and quantity. Principle of the method of measurements using ANNUBAR DIAMOND II+ and ANNUBAR 485 averaging pressure tubes. General statements.
GSSSD MR 113-03	Determination of density, compressibility factor, adiabatic exponent
ГСССД МР 113-03	and dynamic viscosity coefficient of wet petroleum gas
GSSSD MR 118-05	Calculation of density, compressibility factor, adiabatic exponent and
ГСССД МР 118-05	dynamic viscosity coefficient of moderately compressed gas mixtures.
GSSSD MR 122-06	Calculation of the basic thermodynamic properties and dynamic
ГСССД МР 122-06	viscosity coefficients and thermal conductivity of nitrogen.
GSSSD MR 134-07	Calculation of density, compressibility factor, adiabatic exponent and
ГСССД МР 134-07	dynamic viscosity coefficient of nitrogen, acetylene, oxygen, carbon dioxide, ammonia, argon and hydrogen.
R 50.2.077-2014	Recommended Practice. Type evaluations of a measuring instrument
P 50.2.077-2014	for type approval. Software validation for protection assurance.
R 50.2.076-2010	State system for ensuring the uniformity of measurements. Density of
P 50.2.076-2010	petroleum and petroleum products. Methods of calculation. Programs and tables of calculation.
TU 4213-060-44147075-02	TEKON-19 calculating and measuring transducers.
ТУ 4213-060-44147075-02	Specifications.
T10.06.59 RD	TEKON-10, TEKON-17 heat power controller. Exchange via serial
Т10.06.59 РД	link. Programmer manual.

P. 78

ANNEX B – Lists of the TEKON-19 parameters and algorithms

Table B.1 –List of 'rigid' parameters of the TEKON-19 of all versions	
---	--

Paramet	Parame	ter name		Desig	Туре	Place	Acce	Availability in
er				nation	1)	2)	SS	version ¹²⁾
number	full		short	7)			3)	11111
							12345678901234	
0101	TT V		'Analogue me			D	22	
0101	Измерительный ток на Measuring current on the		Ток ТС	ЗК	Π	Program ROM	23	+++_++++_++
	temperature transducer, r					KOW		
0102	Опорное напряжение		Иопорн	ЗК	П	Program	23	+++_+++++++++++++++++++++++++++++++++++
	ADC reference voltage, 1		P			ROM		
0103	Порог переключения	Кус АЦП	Uпорог	ЗК	Ш2	Program	23	+++_+++++++++++++++++++++++++++++++++++
	min, max	5	1			ROM		
	Switching threshold AD	C GF min,						
	max					-		
0104	Кус для больших	АЦП0 ADC0	Kyc Umax	ЗК	П	Program	23	+++_+++_++_++
i104	напряжений, i=1,2,3 GF for high voltages, i =	АДСО АЦПі	KycUmaxi	ЗК	П	ROM Program	23	_
1104	1,2,3	ADCi	KycOlliaxi	31	11	ROM	25	I
0105	Кус для средних	АЦП0	Kyc Ucp	ЗК	П	Program	23	+++_+++++++++++++++++++++++++++++++++++
	напряжений, і=1,2,3	ADC0	J F			RÕM		
i105	GF for medium	АЦПі	Kyc Ucpi	ЗК	П	Program	23	+
0106	voltages, $i = 1,2,3$	ADCi				ROM		
	Кус для малых напряже	ний	Kyc Umin	ЗК	П	Program	23	+++_+++_+++
	GF for low voltages					ROM		
0108	Смещение Кус для	АЦП0	dK Umax	ЗК	П	Program	23	+++_+++_++_++
	больших напряжений,	ADC0				ROM		
i108	MB, i=1,2,3	АЦПі	dK Umaxi	ЗК	П	Program	23	+
	GF shift for high voltages, mV , $i = 1,2,3$	ADCi				ROM		
0109	Смещение Кус для	АЦП0	dK Ucp	ЗК	П	Program	23	+++_+++_++_++
	средних напряжений,	ADC0	Ĩ			RÕM		
i109	мВ, і=1,2,3	АЦПі	dK Ucpi	ЗК	Π	Program	23	+
	GF shift for medium	ADCi				ROM		
010A	voltages, mV, i = 1,2,3 Смещение Кус для ма.	пых	dK Umin	ЗК	П	Program	23	+++_+++_++
01011	напряжений, мВ		ure onin	SIC	11	ROM	25	
	GF shift for low voltages, mV							
0110								+++_+++++++++++++++++++++++++++++++++++
-	Смещение канала ИК0-	ИК9, мВ	$dU Ti \frac{10}{10}$,	3К	П	Program	23	+++-+++++++++++++++++++++++++++++++++++
0112	MC0 MC0 shares 1 -1 '0	mV	dU Ji ¹⁰⁾			ROM		+++-+++++++++++++++++++++++++++++++++++
0113	MC0-MC9 channel shift	, 111 V						++++-++-++
0114	4							+++
0115 0116								·+
0116 010C								+
010C	Входное сопротивлени	е ИК. Ом	Rвх Ji ¹⁰⁾	ЗК	П	Program	23	 ++++
010E	^	·				ROM		++++-+
010 F	MC terminal impedance,	Ohm						+++
•	1		I	I		I		•

Table B.1 continued

Paramet	Parameter name			Desig	Туре	Place	Acce	Availability in
er				nation	1)	2)	SS	version ¹²⁾
number	full		short				3)	11111
0118								12345678901234
0118	Калибровка ИК, мВ		КалибрJi ¹⁰⁾	ΗП	П	Program	22	+
011) 011A			itumopui			ROM		++++-++
011B	MC calibration, mV							+++
011C	Напряжение на канале		Uri ¹⁰⁾ ,	С	П	XRAM	13	+++_+++++++++++++++++++++++++++++++++++
011D	ИКО-ИК9, мВ		Uji ¹⁰⁾					+++_+++++++++++++++++++++++++++++++++++
011E	MC0 MC0 shows al vialta	$\sim 10^{-10}$						+++_+++++++++++++++++++++++++++++++++++
011 F	MC0-MC9 channel volta	ge, mv						+++_+++_++_
0120	-							+
0121 0122	-							+
0122	Ток в канале ИК, мА		Ii ¹⁰⁾	Р	П	XRAM	13	+
0400	TOK B KAHAJIC PIK, MA		11	1	11	ANAM	15	++++
0401	MC channel current, m	A						+++++
0403								+++
0404	Сопротивление в	Т0	Rтс 0	Р	П	XRAM	13	+++_+++_++
0405	канале «Ті», Ом.	T1	Rтс 1					+_++++++
0406	I=04	T2	Rтс 2	1				+++++
0407		Т3	Rтс 3	Ī				+++
	'Ti' channel							
	resistance, Ohm.							
	I=04 2 Task "Ir	nnulso_nu	mber and fr	oquona	w mag	suromor	ts"	
0200	Цифровой фильтр	input 0	фильтр 0	НП	bit	Progra	22	+++++++++-+
0200	250 Гц на входе Fi	input 1	фильтр 1	1111	υπ	m ROM	22	++++++++++
0201	включен	input 2	фильтр 2	+				++++++++++
0202		input 2	фильтр 3	-				++_+_+
0204	250 Hz digital filter at	input 4	фильтр 4	-				+++
0205	Fi input is switched on	input 5	фильтр 5	+				+++
0206		input 6	фильтр 6					+++
0207		input 7	фильтр 7	†				++
0408	Текущая частота	input 0	Бтек 0	Р	Π	XRAM	13	+++++++++-+
0409	на входе Fi, Гц	input 1	Fтек 1					+++++++++
040A	-	input 2	Fтек 2					+++++++++-+
040B	Current Fi input	input 3	Fтек 3					++_+_+
040C	frequency, Hz	input 4	Бтек 4	-				+++
040D		input 5	Бтек 5					+++
040E		input 6	Бтек 6					+++
040 F		input 7	Fтек 7	-				++
0410	Число импульсов	input 0	<u> </u>	Р	Д2	XRAM	12	++++++++++-+
0411	за цикл на входе Fi	input 1	<u> </u>					++++++++++-+
0412	Number of pulses nor	input 2	<u> </u>					++++++++++-+
0413	Number of pulses per cycle at Fi input	input 3	Nимп ц 3 Nимп ц 4					++_+_+
0414		mn 11T / I	I INTERVET TT /I			1		+++
0414 0415	cycle at l'i input	input 4 input 5	Nимпц4 Nимпц5					+++

Progra m ROM

22

_+++++

Ш2

ΗП

Paramet	Paramet	ter name		Desig	Type	Place	Acce	
er				natio	1)	2)	SS	version ¹²⁾
number	full		short	n			3)	11111
								12345678901234
0416		input 6	Nимп ц 6					++++
0417		input 7	Nимп ц 7					++
0506	Состояние	input 0	Вход О	C	bit	RAM	10	+++++++++-++
0507	дискретного входа	input 1	Вход 1					+++++++++-+
	Fi	input 2	Вход 2					+++++++++-++
0509	,	input 3	Вход 3					++_+_+
050A	Discrete Fi input	input 4	Вход 4					+
050B	status	input 5	Вход 5					+++
050C		input 6	Вход б					+++
050D		input 7	Вход 7		[]			++
0210	Мгновенная целая	input 0	Гмгнов 0	C	Д2	XRAM	22	+++++++++-+
0211	частота на входе Fi,	input 1	Гмгнов 1					+++++++++-++
	Гц	input 2	Гмгнов 2					+++++++++-+
0213		input 3	Гмгнов 3					++_+_+
	Instantaneous							
	frequency at Fi input,							
	Hz							
0214	Мгновенная целая	input 4	ЕМГНОВ 4					+++
0215	частота на входе Fi,	input 5	ЕМГНОВ 5					+++
	Гц	input 6	ЕМГНОВ 6					+++
0217	T , ,	input 7	Гмгнов 7					++
	Instantaneous							
I	frequency at Fi input, Hz							
0208	нz Общее число	input 0	общимп 0	С	Д2	XRAM	12	++++++++++-+
0208	импульсов на входе	input 0	общимп 0		<u>д</u> 2		14	+++++++++++++-+
	Гі Гі	input 1	общимп 1					+++++++++++-++++++++++++++++++++++++++++++++++++
020A 020B	11	input 2	общимп 2	-				++_+_++++++
020B 020C	General number of	input 4	общимп 3					++++
020C 020D	pulses at Fi input	input 4	общимп 4 общимп 5					;; ; +++
020D 020E	pulles with the	input 5	общимп 5	-				;;;_;
020E 020 F		input 7	общимп 7					++
0201			Task "Indica	ation"				
		~	3.1 Main m					
0700(i)	Индицируемый парамет	n i=0.,199	параметр	НП	III2	Progra	22	_++++
0/00(-)	Displayed parameter, i=	1 /	Indhame - L	1		m ROM		
0701(i)			точность	ΗП		Progra	22	_++++
0101(-)	i=0199	umi 01-,	10 110 0			m ROM		
	Number of decimals, i	=0199						
0702(i)	Наименование, і=023		ИМЯ	ΗΠ	III1 ⁸⁾	Progra	22	_+++++
	Name, i=02399					m ROM		
	· · · · ·	, -	3.2 Archives	menu	·	L		
0704(.)	TT			TILL	1110	р	22	

параметр

Table B.1 continued

0704(i) Индицируемый параметр,

Displayed parameter, i=0..55

i=0..55

Table B.1 continued

Developed			Derie	Т	D1	4	A :1_1:1:4 :
Paramet	Parameter name	i	Desig	Type	$Place_{2)}$	Acce	
er			natio	1)	2)	SS 3)	version ¹²⁾
number	full	short	n			5)	11111
							12345678901234
0705(i)	Число знаков после запятой,	точность	ΗП	Д1	Progra	22	_++++++
	i=055				m ROM		
	Number of decimals, i=055						
0706(i)	Наименование, і=0671	ИМЯ	ΗП	$III18^{)}$	Progra	22	_++++++
()	Name, i=0671			_	m ROM		
		3.3 Cyclic n	nenii	I			
0707(i)	Индицируемый параметр,	параметр	НП	III2	Progra	22	_++++
0707(1)		napamerp	1111	1112	m ROM		
0700()	Displayed parameter, i=09		TITT	TT 1	D	22	
0708(i)	Число знаков после запятой,	точность	ΗП	Д1	Progra	22	_++++
	i=09				m ROM		
	Number of decimals, i=09			0)			
0709(i)	Наименование, і=0119	ИМЯ	ΗП	Ш1 ⁸⁾	Progra	22	_++++++
	Name, i=0119				m ROM		
		4 Task "Sys	tem"				
		ption of the s		e modu	le		
F000	Тип модуля	Тип	С		Progra	10	+++++++++++++++++++++++++++++++++++++++
1000	Module type		C		m ROM		
0512	Исполнение модуля	Исполнен	ЗК	Ш1	Progra	33	++++++++++
0312	Module version	richomien	JK		m ROM		
F040		Conva	ЗК	III2	Data	13	+++++++
г040	Серия	Серия	лс	1112		13	
F001	Series		210	1110	ROM	1.2	
F001	Заводской номер	Зав N	ЗК	Ш2	Data	13	+++++++++++++++++++++++++++++++++++++++
	Manufacturer number				ROM		
F002	Версия программы	Прогр	С	Ш1	Progra	10	+++++++++++++++++++++++++++++++++++++++
	Program version				m ROM		
F004(i)	Очередь загружаемых задач	Очередь	ΗП	Ш4	Progra	22	++++++++++
	(массив 256 задач)				m ROM		
	Loadable tasks queue (array of						
	256 tasks)						
F005-	Начало таймерных задач	-	ЗК	III2	Progra	22	not applicable
F008	512Гц, 64Гц, 8Гц, 1Гц		011		m ROM		not appneable
1000	Start of timer tasks 512Hz,						
	64Hz, 8Hz, 1Hz						
E000			21/	1112	Drogra	22	not oppliaabla
F009	Начало задач по запросу	-	ЗК	Ш2	Progra	22	not applicable
	Start tasks on request		1111	111.4	m ROM		
F00A(1)	Таблица параметров	Пар зад	ΗП	Ш4	Progra	22	+++++++++
	загружаемых задач,				m ROM		
	i=02047Table of parameters of						
	loaded tasks, i=02047						
F00B(i)	Таблица описания	опис гиб	ΗП	Ш4	Progra	22	++++++++++
	гибких параметров, і=01019				m ROM		
	Table of flexible parameters,						
	i=01019						
		1	1	1	1	1	L

Table B.1 continued

Paramet er		Parameter name		Desig natio	Type	Place 2)	Acce ss	Availability in version ¹²⁾
number		full	short	n	,	,	3)	11111
								12345678901234
F00C		ги очереди задач	дл очере	ЗК	Д2	Progra	20	+++++++++
	(=1024 байт) Longth of the	task queue area (=				m ROM		
	1024 bytes)	lask queue alea (-						
F00D		цы параметров	дл пар з	ЗК	Д2	Progra	20	+++++++++
	загружаемых	задач (=4096	1		, ,	m RÕM		
	байт)							
	-	table of parameters -100 (here -100)						
	тог loadable ta Длина област	sks (= 4096 bytes)	дл гиб п	ЗК	Д2	Progra	20	+++++++++
FUUE	длина област гибких парам		дл гио п	лс	Д2	m ROM	20	····
	байт)							
	Length of the	flexible parameter						
	1	ea (= 4080 bytes)						
	Длина	in RAM (=48	гиб РПД	ЗК	Д2	Progra	20	++++++++++
	области размещения	bytes) in XRAM	гиб ОЗУ	ЗК	Д2	m ROM Progra	20	+++++++++
	размещения гибких	(=512000 bytes)	140 03 9	лс	Д2	m ROM	20	····
	параметров	in data ROM	гиб РПЗУ	ЗК	Д2	Progra	20	+++++++++
	Length of	(=1024 bytes)			, ,	m ROM		
F012	flexible	in program ROM	гиб прог	ЗК	Д2	Progra	20	+++++++++
	parameter	(=0)				m ROM		
	placement area							
	неа Начальный	in RAM (=0080h)	Агиб РПД	ЗК	Ш2	Progra	20	
	адрес	(•		m ROM		
	размещения	in XRAM	Агиб ОЗУ	ЗК	III2	Progra	20	+++++++++
	гибких	(=1000h)		210	1110	m ROM		
	параметров Initial address		АгибРПЗУ	ЗК	Ш2	Progra m ROM	20	+++++++++
	for flexible	in program ROM	-	ЗК	Ш2	Progra	20	+++++++++
	parameters			511		m ROM	-•	
	placement							
F026	Заводской па	L	Пароль3	ЗК	Ш4	Progra	30	+++++++++++++++++++++++++++++++++++++++
	Manufacturer		Unormath	НП	Ш4	m ROM	23	+++++++++
F028(I)	Идентификат Identifier, i=0.	1 /	Идентиф	пш	Ш4	Progra m ROM	23	····
F029(i)	Символ корот		Зад имя	ΗΠ	Ш1	Progra	23	+++++++++
	задачи, і=02	047				m ROM		
	Task short nar	ne symbol,						
E02 4	i=02047		Поте Ос-	<u> </u>	5)	VD ANA	22	
F02A	Дата останова Stop date	a	ДатаОст	C	-,	XRAM	23	+++++++++
F02B	Время остано	Ba	ВремяОст	С	4)	XRAM	23	
	Stop time		r					
	Table B.1 co	ontinued						

T10

Paramet	Parameter name		Desig	Type	Place	Acce	Availability in
er number	full	short	natio n	1)	2)	SS 3)	version ¹²⁾ 11111 12345678901234
F02C	Маркеры останова Stop markers	МаркОст	C	9Ш2	XRAM	23	++++++++++
F02D	Фиксация останова Stop fixation	ФиксОст	C	III2	XRAM	23	++++++++++
	4.2	Interfaces ad	ljustme	nt			
0000	Сетевой номер CAN-BUS CAN-BUS network number	сет N	ΗП	Ш1	Data ROM	22	+++++++++++++++++++++++++++++++++++++++
0004	Конфигурация и скорость CAN BUS CAN BUS configuration and rate	скорость	НП	III2	Data ROM	22	+++++++++++++++++++++++++++++++++++++++
0005	Сетевой номер RS-232 TTL RS-232 TTL network number	номер RS	НП	Ш1	Data ROM	22	+++++++++
0006	Описатель интерфейса RS-232 RS-232 interface descriptor	интер RS	НП	Ш17)	Data ROM	22	+++++++++
0007	Константа частоты RS-232	част RS	ΗП	III27 ⁾	Data	22	+++++++++

	RS-232 interface descriptor				ROM		
0007	Константа частоты RS-232	част RS	ΗП	Ш27)	Data	22	+++++++++
	RS-232 frequency constant				ROM		
	4.3 Gene	eral settings for	or calcu	lations	5		_
F025	Пароль наладки	Пароль2	ΗП	Ш4	Data	22	+++++++++++++++++++++++++++++++++++++++
	Setup Password				ROM		
0300	Стандартная температура	Тхи стан	ΗП	П	Data	12	+++++++++
	холодного источника, °С				ROM		
	Standard cold source						
	temperature, °C						
0306	Номер параметра,	номерТхи	ΗП	III2	Data	12	+++++++++
	используемого как Тхи				ROM		
	Number of parameter used as						
-	Тхи						
0308	Используемая Тхи, °С	Тхи	Р	П	XRAM	12	++++++++++
	Тхи used, °C						
0301	Стандартное атмосферное	Ратм ста	ΗП	П	Data	12	+++++++++
	давление				ROM		
-	Standard atmospheric pressure						
0307	Номер параметра,	номерРат	ΗП	Ш2	Data	12	+++++++++
	используемого как Ратм				ROM		
	Number of parameter used as						
	Patm				_		
0304	Размерность Ратм: мм рт ст \	РазмРатм	ΗП	Д1	Data	12	+++++++++
	кгс/см2 $M\Pi a (0/1/2)$				ROM		
	Patm dimension: mm						
0000	$Hg\kgf/cm2 \ MPa (0\1\2)$	D		н		10	
0309	Используемое Ратм	Ратм	Р	Π	XRAM	12	+++++++++
	Ратм used		<u></u>	<u></u>			

P. 84

Table B.1 continued

Paramet	Paramet	er name	-	Desig	Type	Place	Acce	Availability in
er				nation	1)	2)	SS	version ¹²⁾
number	full		short				3)	11111
	_						12345678901234	
	Длительность расчетног	интервал	ΗП	П	Data	12	+++++++++	
	интервала, минут				ROM			
	Duration of the estimated minutes	interval,						
	пппитея Расчетный час		Door yoo	НП	Д1	Data	12	++++++++++
1023	Расчетный час Checkout time		Расч час	1111	ді	ROM	12	+++++++++++++++++++++++++++++++++++++++
F022	Расчетный день месяца		Расч день	НП	Д1	Data	12	
	Estimated day of the mon	th	1 асч день	1111	дт	ROM	12	
	Дата НН ДД ММ ГГ		Дата	Р	5)	XRAM	12	+++++++++
	Date HH DD MM YY		Auru					
	Время 00 сс мм чч		Время	Р	4)	XRAM	12	+++++++++
	Time 00 ss mm hh		1					
0302	Очистка ХОЗУ		очистка	ΗП	bit	RAM	22	+++++++++
	XRAM Cleanup							
0303	Запрет \ разрешение лет	него	Летн вр	ΗП	bit	Data	12	+++++++++
	времени (0\1)		1			ROM		
	Summer time allowance/b							
0501	Отказ алгоритмический		АлгОтказ	ΗП	bit	RAM	12	+++++++++
	Algorithmic failure							
		ediate and serv						
0305	Энтальпия ХИ, МДж/кг		Энт ХИ	Р	П	XRAM	23	+++++++++
	Enthalpy CI, MJ / kg			0	TTT 1	DAM	22	
	Режим работы		режим	C	Ш1	RAM	23	++++++++++
	Operation mode Код пользователя		ПОПІЗОР	С	Ш1	RAM	20	+++++++++++++++++++++++++++++++++++++++
	User code		пользов	C	1111	INAIVI	20	+++++++++ - ++
	Длительность цикла	hours	Цикл, ч	Р	П	XRAM	13	++++++++++
		seconds	Цикл, 1 Цикл, с	P	П	XRAM	13	+++++++++++++++++++++++++++++++++++++++
1011	Calculation cycle length	seconds	цикл, с	1	11		15	
0500	Состояние отказов		отказы	С	Ш2 ⁶⁾	RAM	10	+++++++++++++++++++++++++++++++++++++++
	Failure Status							
	Расширенные отказы		Расш отк	С	Ш4 ⁶⁾	RAM	10	+++++++++++++++++++++++++++++++++++++++
	Extended failures							
0513	Дополнительные отказы	I	ДопОтказ	С	Ш1 ⁶⁾	RAM	10	+_++
	Additional failures			-			1.0	
050E	Общий отказ ТЭКОН-19		Общ отк	Р	bit	RAM	10	+++++++++
0502	TEKON-19 general failur	re		0	TTT 1	DAM	22	
0502	Флаги времени Time flags		-	C	Ш1	RAM	23	+++++++++
0503	Time flags Контрольный адрес		Hon\c.rn	C	Ш4	XRAM	22	++++++++++
	Control address		Пар\адр		1114	λκανί		
	Содержимое контрольно	00	Адр плав	C	П	XRAM	23	
	параметра/адреса		Адр Плав	1	Ш4	~ ```` ```		
0000	Content of the control		righ 10					
	parameter/address							
	Счет секунд за 30 минут		Т30 с	С	Д1	XRAM	23	+++++++++
	Counting seconds in 30 minutes							
	Счет секунд интервала		Сек инт	С	Д2	XRAM	23	++++++++++
	Counting interval seconds			1		1	1	
	Counting interval seconds	5						

full

Маркер системных событий

System Event Marker

Parameter name

Desig

nation

С

short

4.5 Testing parameters

маркер

Type

Д1

Place

2)

XRAM

Acce

SS 3)

20

Paramet

er

number

0900

ологическая перемычка nological jumper останова date ия останова	перемычк ДатаОст ВремяОст	C C	5)	RAM XRAM	23 23	+++++++++
останова date ия останова	, ,	С	5)	XRAM	23	+++++++++
я останова	BrevgOct		1			
time	БремяОст	С	4)	XRAM	23	+++++++++
серы останова	МаркОст	С	9Ш2	XRAM	23	+++++++++
сация останова	ФиксОст	С	Ш2	XRAM	23	+++++++++
	em event log (?	256 elei	ments)			
			5)	XRAM	10	+++++++++
	A1111111111111					
	врем соб	С	4)	XRAM	10	+++++++++
	вид	С	9)	XRAM	10	+++++++++
тие	Событие	С		XRAM	10	+++++++++
	ence system log	(1024	elemen	its)		I
вмешательства	дата Вмеш	C	5)	XRAM	10	+++++++++
	врем Вмеш	С	4)	XRAM	10	+++++++++
	НомерПар	С		XRAM	10	+++++++++
ое значение параметра	СтарЗнач	С		XRAM	10	+++++++++
е значение параметра	НовоеЗна	С		XRAM	10	++++++++++
1	8 System exp	ansion				I
идартное имя очереди, 6	Имя очер	ΗΠ	S4 ¹¹⁾	Program ROM	13	_++++
объекта, і=06	Имя объе	ΗΠ	S4 ¹¹⁾	Program ROM	12	_++++++
иетрологич ПО эталон	М ПО эт	ЗК	Ш4	Program	10	++++++
иетрологич ПО реально	М ПО р	С	Ш4	XRAM	10	_++++++
<u> </u>						
1 1 1	серия	ЗК	Ш4	Program ROM	13	_++++++
ота процессора	ЧастПроц	ΗП	Ш1	Data ROM	22	_++++
	markers caция останова fixation <u>4.6 Syste</u> coбытия of event ия события t time coбытия t type итие t <u>4.7 Interfere</u> вмешательства ference date ия вмешательства ference date ия вмешательства ference time ep параметра neter number oe значение параметра ous parameter value oe значение параметра parameter value oe значение параметра parameter value <u>4.</u> ндартное имя очереди, 6 ue standard name, i=06 объекта, i=06 объекта, i=06 метрологич ПО эталон dard software metrolog CS истрологич ПО реально ial software metrolog CS ep серии приборов ument Series Number	markers Г сация останова fixation ФиксОст 4.6 System event log (2 события из события дата соб события дата соб из события врем соб итие Вид события вид из события вид события вид события вид события вид события вид события вид 4.7 Interference system log дата BMeш ference date дата BMeш ference time врем BMeш ер параметра HomepПар neter number СтарЗнач ое значение параметра HosoeЗна рагатеter value 4.8 System exp идартное имя очереди, Имя объе объекта, i=06 Имя объе метрологич ПО эталон М ПО эт dard software metrolog CS метрологич ПО реально иетрологич ПО реально М ПО р al software metrolog CS серия	таккетя Парте С сация останова ФиксОст С fixation Дата соб С события дата соб С из события врем соб С из события вид С события вид С события вид С титие Событие С 4.7 Interference system log (1024 вмешательства регенсе date дата BMeш С из вмешательства дата BMeш С ference date Дата BMeш С из вмешательства врем BMeш С ference time С С ер параметра НомерПар С ов значение параметра СтарЗнач С ов значение параметра НовоеЗна С рагатеter value 4.8 System expansion идартное имя очереди, Имя очер НП объекта, i=06 Имя объе НП объекта, i=06 Имя объе НП	алирови Алирови Алирови сация останова fixation ФиксОст С III2 бата соб С 5) 5) события дата соб С 4) из события врем соб С 4) из события вид С 9) события вид С 9) тие Событие С 9) тие Событие С 9) 4.7 Interference system log (1024 element 8 9) вмешательства дата Вмеш С 4) бегепсе date дата BMeш С 4) ер параметра НомерПар С 4) осв значение параметра СтарЗнач С 4) оиз рагатеter value 4.8 System expansion 4.8 System expansion идартное имя очереди, Имя очер НП S4 ¹¹) 6 ист пате, i=06 Имя объе НП S4 ¹¹) 6 старологич ПО эталон М ПО эт <td>таккегs Пирова Пиров</td> <td>markersПарто ГПарто ГПарто Гсация останова fixationФиксОстCIII2XRAM234.6 System event log (256 elements)события об eventдата собC5^{5}XRAM10врем собC4^{4}XRAM10timeсобытия событияврем собC4^{4}XRAM10timeсобытия t typeвидC9^{9}XRAM10timeсобытиеC9^{9}XRAM10timeсобытиеC9^{9}XRAM10timeсобытиеC9^{9}XRAM10timeсобытиеC9^{9}XRAM10timeC5^{9}XRAM10timeG5^{9}XRAM10ference dateврем ВмешC4^{9}XRAM10timeC5^{9}XRAM10c5^{9}XRAM10c5^{9}XRAM10c5^{9}XRAM10timeC5^{9}XRAM10c5^{9}XRAM10time5^{9}XRAM</td>	таккегs Пирова Пиров	markersПарто ГПарто ГПарто Гсация останова fixationФиксОстCIII2XRAM234.6 System event log (256 elements)события об eventдата собC 5^{5} XRAM10врем собC 4^{4} XRAM10timeсобытия событияврем собC 4^{4} XRAM10timeсобытия t typeвидC 9^{9} XRAM10timeсобытиеC 9^{9} XRAM10timeсобытиеC 9^{9} XRAM10timeсобытиеC 9^{9} XRAM10timeсобытиеC 9^{9} XRAM10timeC 5^{9} XRAM10timeG 5^{9} XRAM10ference dateврем ВмешC 4^{9} XRAM10timeC 5^{9} XRAM10c 5^{9} XRAM10c 5^{9} XRAM10c 5^{9} XRAM10timeC 5^{9} XRAM10c 5^{9} XRAM10time 5^{9} XRAM

11111

Availability in

version¹²⁾

12345678901234

Paramet	Parameter name		Desig	Туре	Place	Acce	Availability in
er			nation	1)	2)	SS	version ¹²⁾
number	full	short				3)	11111
							12345678901234
0518	Первый цикл после	Вкл пит	С	bit	RAM	13	_+++++
	перезапуска						
	First cycle after restart						

NOTES:

- 1. П float-point number; Ш hexadecimal number, Д decimal number, S symbol. The number indicates the number of bytes in the internal representation of the number. Floating decimal numbers in IEEE-754 standard format (short real numbers, 4 bytes).
- 2. Data ROM, program ROM is a reprogrammable memory data and programs, respectively. XRAM is external RAM with power from an internal source. RAM is internal RAM, when external power is disconnected, information is not saved.
- 3. 3. The first digit indicates the access level for reading, the second for recording: 0 no operation, 1 user, 2 service engineer, 3 customer engineer (see 3.2).
- 4. Four bytes with a binary decimal time representation: empty, seconds from 00 to 59, minutes from 00 to 59, hours from 00 to 23.
- 5. Four bytes with a binary decimal representation of the date: the day of the week (00 Monday, ..., 06 Sunday), the date from 01 to 31, the month from 01 to 12, the minor digits of the year from 00 to 99.
- 6. A hexadecimal number whose binary digits are indicative of health (condition '0') or malfunction (condition '1'). For bitwise decoding see tables 2.11 (parameters 0500 and 0516) and 2.12 (parameter 0513).
- 7. Designation see 2.3.1.8.
- 8. Every 12 consecutive elements of the array are the string of the parameter name in the text encoding of Windows.
- 9. Assignment see 2.3.8.
- 10. The distribution of channels by numbers and types depends on the version.
- 11. Groups of 4 characters.
- 12. Versions 01, 07-09 are discontinued. For versions, 12-14 there is separate documentation.

P. 86

Table B.2 – List of the TEKON-19 loadable algorithms in the database

Algor		Name		1	ber of	XRAM	
num					neters	necessary	Note
internal				-	Output	amount	
(in DB)	al	full	short	1)	2)	(bytes)	
	Ar	ithmetic operations on parar	neters and con	stants fr	om a floa	ating decir	nal
0030	01	X1+X2->Y	Y=X1+X2	2	1	4	
0031	02	Х+К->Ү	Ү=Х+К	1(+1)	1	4	
0032	03	X1-X2->Y	Y=X1-X2	2	1	4	
0033	04	Х-К->Ү	Ү=Х-К	1(+1)	1	4	
003C	05	К-Х->Ү	Ү=К-Х	1(+1)	1	4	
0034	06	X1*X2->Y	Y=X1*X2	2	1	4	
0035	07	X*K->Y	Ү=Х*К	1(+1)	1	4	
0036	08	X1/X2->Y	Y = X1/X2	2	1	4	
0037	09	X/K->Y	Y=X/K	1(+1)	1	4	
0038	0A	К/Х->Ү	Ү=К/Х	1(+1)	1	4	
0089	0 F	Comparison Sign(X2-X1)- >Y	Sig(2-1)	2	1	-	Y –bit
		Logical ope	rations on bit	baramet	ers		
0199	0B	X1vX2vX3vX4->Y	X1vvX4	4	1	-	"OR"
019A	0C	X1&X2->Y	X1&X2	2	1	-	"AND"
006A	1B	X1 (+) X2->Y	X1(+)X2	2	1	-	excl. "OR"
006B	1B	X1 (+) X2->Y	X1(+)X2	2	1	-	EXCL. "OR",
							X2 in ROMD
0073	0D	^X->Y	Y=^X	1	1	-	inversion
		Measurement and o		hysical	quantitie		
0190	10	Расчет температуры с	t TC	4	2	4	Rтс -> t
		ТСМ\ТСП					With the failure
		Temperature calculation					monitoring
0101		with RTC/RTP					T
0191	11	Токовый линейный	Лин X(I)	5	2	4	Ідат -> X
		датчик X(I)					With the
0192	10	Current Line Sensor X(I)	$\mathbf{U} = \mathbf{V}(\mathbf{I})$	5	2	4	failure monitoring
0192	12	Токовый квадратичный датчик X(I)	Кв X(I)	5	Z	4	monitoring
		Current Squared Sensor					
		X(I)					
0193	13	Частотный линейный	X(F)	6	2	4	Fдат -> X
0175	10	датчик X(F)	(-)		-		1 Aut - 13
		Frequency linear sensor					
		X(F)					
0197	14	Расчет температуры	Т насыщ	1	1	4	Рабс -> Табс
		насыщенного пара по	r				
		давлению					
		Temperature calculation of					
		saturated vapour by					
		pressure					

Algor		Name			ber of meters	XRAM necessary	Note
Internal (in DB)		full	short	Input 1)	Output 2)	amount (bytes)	
0198	15	Расчет давления насыщенного пара по температуре Pressure calculation of saturated vapour by temperature	Р насыщ	1	1	4	Табс -> Рабс
0194	16	Ограничение параметра Parameter constraint	Огранич	5	3	4	With access control
0195	17	Перевод давления из кгс/см ² в МПа с приведением к абсолютному Pressure conversion from kgf/cm ² to MPa with reduction to absolute	В абсМПа	3	1	4	
0196	18	Перевод перепада давления из к rc/m^2 в к Πa Conversion of pressure drop from kgf/m ² to kPa	dР в кПа	2	1	4	
019B	19 ation of	Выбор поддиапазона перепада Drop subrange selection instantaneous and accumulated	Диап dP	4 on by tl	1 ne metho	4 d of variah	Choice of 1 of 2 sensors
Culcul		$f = f(dP, Tc, Pa\delta c)$ with angula					
0210, 02A0		Расчет расхода воды Calculation of water consumption	Water dP	11	6(+4)	256	Cold, hot
0213, 02A3	21, 73	Pacчет расхода природного газа Calculation of natural gas consumption	Gas dP	14	4(+2)	256	Gv only
02FB	CE	Расчет расхода природного газа (ГОСТ 30319.3) Calculation of natural gas consumption (GOST 30319.3)	ПрГазdР	28	6(+4)	44	Gv only
0211, 02A1	22, 71	Расчет расхода перегретого пара Calculation of the superheated vapour consumption	Ппар dP	11	6(+4)	256	
0212, 02A2, 0850	23, 72, B6	Pacчет расхода насыщенного пара Calculation of saturated vapour consumption	Нпар dP	11	6(+4)	256	

Table B.2 continued

Algor		Name			ber of	XRAM	
num					meters	necessary	Note
Internal				Input	$Output_{2}$	amount	
(in DB)	al	full	short	,	,	(bytes)	
024A,	44,	Расчет расхода газа с	НГаз dP	14	6(+4)	256	
02AA	77	заданными					
		характеристиками					
		Calculation of gas flow with					
		specified characteristics					
0805	91	Расчет расхода	CO2 dP	11	7(+4)	256	
		диоксида углерода					
		Calculation of carbon dioxide	;				
		consumption					
0806	92	Расчет расхода	O2 dP	11	7(+4)	256	
		Кислорода					
		Calculation of oxygen					
		consumption					
0246,	47,	Расчет расхода	возд dP	11	7(+4)	256	
02A6	76	сжатого воздуха					
		Calculation of the					
		consumption of compressed					
		air					
02F3	94	Расчет расхода влажного		26	7(+12)	1024	Gv, Gm
		нефтяного газа	НефГазdР		. ,		
		Calculation of wet petroleum	-				
		gas consumption					
02F6	97	Расчет расхода смеси газов	СмГазdР	30	9(+10)	512	Gv, Gm
		Calculation of gas mixture					
		consumption					
0800	9A	Расчет расхода азота	N2 dP	12	9(+10)	256	Gv, Gm
		Nitrogen consumption					
		calculation					
0801	9B	Расчет расхода аргона	Ar dP	12	9(+10)	256	Gv, Gm
		Argon consumption					
		calculation					
0802	9C	Расчет расхода водорода	H2 dP	12	9(+10)	256	Gv, Gm
		Hydrogen consumption			. ,		
		calculation					
0803	9D	Расчет расхода ацетилена	C2H2 dP	12	9(+10)	256	Gv, Gm
		Acetylene consumption			. ,		
		calculation					
0804	9E	Расчет расхода аммиака	NH3 dP	12	9(+10)	256	Gv, Gm
		Ammonia consumption					
		calculation					
Cal	culatio	n of the instantaneous and acc	umulated cor	sumpti	on using	the "powe	r" (current,
		frequency) flow sense		-	-	-	× ,
020 F	43		роизGм	1	2(+1)	256	Gv = Gдат
		Free medium	•				
Table E	32 cor	ntinued		•	•	•	
- 4010 L							

Internal (m DB) alfullshortInput (bytes)Output (bytes)amount (bytes)021424Pacver pacxoga воды Calculation of water consumptionBoga GM46(+4)256Cold, hot021725Pacver pacxoga mpupohnoro rasa Calculation of natural gas consumptionГаз GM74(+2)256Gv only021725Pacver pacxoga mpupohnoro rasa Calculation of natural gas consumptionГаз GM74(+2)256Gv only021725Pacver pacxoga mpupohnoro rasa (ГОСТ 30319.3) Calculation of natural gas consumption (GOST 30319.3)Газ GM217(+2)36Gv only021526Pacver pacxoga neperperoro napa Calculation of the superheated vapour consumptionInnap GM46(+4)256021627, Pacver pacxoga macsumptionHnap GM46(+4)256021627, Pacver pacxoga rasa calculation of saturated vapour consumptionHnap GM56(+4)256021848Pacver pacxoga rasa calculation of gas flow with specified characteristicsCO2 GM47(+4)2560825ACPacver pacxoga rasa calculation of arbon dixide consumptionCO2 GM47(+4)2560826ADPacver pacxoga rasa calculation of oxygen consumptionCO2 GM47(+4)2560826ADPacver pacxoga rasa calculation of be consumptionD2 Gas47(+4)<	Algor num		Name			ber of meters	XRAM necessary	Note
(in DB)alfullshorti)2j(bytes)021424Pacver pacxoдa воды Calculation of water consumptionBoga GM46(+4)256Cold, hot021725Pacver pacxoga природного газа Calculation of natural gas consumptionFa3 GM74(+2)256Gv only02FCCFPacver pacxoga природного газа (ГОСТ 					-			1000
021424Расчет расхода воды Calculation of water consumptionВода GM46(+4)256Cold, hot021725Расчет расхода природного газа Calculation of natural gas consumptionГаз GM74(+2)256Gv only02FCCFРасчет расхода природного газа Calculation of natural gas consumptionГаз GM217(+2)36Gv only02FCCFРасчет расхода природного газа (ГОСТ 30319.3)Газ GM217(+2)36Gv only021526Расчет расхода перетрегото пара Calculation of the superheated vapour consumptionПпар GM46(+4)256021627, Racчет расхода перетрегото пара Calculation of sturated vapour consumptionНпар GM46(+4)256021627, Racчет расхода Calculation of sturated vapour consumptionНГаз GM56(+4)256021627, Racчет расхода Calculation of gas flow with specified characteristicsНГаз GM56(+4)2560825ACРасчет расхода диоксида углерода Calculation of carbon dixide consumptionCO2 GM47(+4)2560826ADРасчет расхода диоксида углерода Calculation of oxygen consumption02 GM47(+4)25602494BРасчет расхода саlculation of the consumption02 GM47(+4)256			full	short				
Calculation of water consumptionFas GM74(+2)256Gv only021725Paever pacxoga ropupolator rasa Calculation of natural gas consumptionFas GM74(+2)256Gv only02FCCFPaever pacxoga ropupolator rasa (FOCT 30319.3) Calculation of natural gas consumption (GOST 30319.3)Fas GM217(+2)36Gv only021526Paever pacxoga roperpertor napa Calculation of the superheated vapour consumptionImap GM46(+4)2560216, 085227, Rever pacxoga roperpertor napa Calculation of saturated vapour consumptionHnap GM46(+4)2560216, 085227, Rever pacxoga raper, pacxoga rasa c adauthed with specified characteristicsHTas GM56(+4)2560825AC Paever pacxoga reperperoration of gas flow with specified characteristicsCO2 GM47(+4)2560826AD Paever pacxoga calculation of carbon dioxide consumptionCO2 GM47(+4)2560826AD Paever pacxoga calculation of carbon dioxide consumptionO2 GM47(+4)2560826AD Paever pacxoga calculation of carbon dioxide consumptionO2 GM47(+4)25602494B Paever pacxoga calculation of the consumptionBo3g GM47(+4)256	· · · · ·				Δ	6(+4)		Cold hot
consumption с с с с с 0217 25 Расчет расхода природного газа Calculation of natural gas consumption Газ GM 7 4(+2) 256 Gv only 02FC CF Расчет расхода природного газа (ГОСТ 30319.3) Газ GM 21 7(+2) 36 Gv only 02FC CF Расчет расхода природного газа (ГОСТ 30319.3) Газ GM 21 7(+2) 36 Gv only 0215 26 Расчет расхода перегрегото пара Calculation of the superheated vapour consumption Ппар GM 4 6(+4) 256 0216, 0852 27, B8 Расчет расхода насыщенного пара Calculation of saturated vapour consumption Hпар GM 4 6(+4) 256 024B 48 Расчет расхода насыщенного пара Calculation of gas flow with specified characteristics S 6(+4) 256 0825 AC Расчет расхода лиюкенда утлерода Calculation of carbon dioxide consumption 4 7(+4) 256 0826 AD Расчет расхода скагоно воздуха Calculation of fvsgen consumption 602 GM 4 7(+4) 256	0214	27	1	Бода См	-	0(++)	250	Cold, not
021725Расчет расхода природного газа Calculation of natural gas consumptionГаз Gм74(+2)256Gv only02FCCFРасчет расхода природного газа (ГОСТ 30319.3) Calculation of natural gas consumption (GOST 30319.3)Газ Gм217(+2)36Gv only021526Расчет расхода перегретого пара Calculation of the superheated vapour consumptionПпар Gм46(+4)2560216, 085227, B8 насыщенного пара Calculation of saturated vapour consumptionНпар Gм46(+4)256024B48Расчет расхода переграхода газа с заданными характеристиками Calculation of gas flow with specified characteristicsКО2 GM47(+4)2560825ACРасчет расхода природаCO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionO2 GM47(+4)2560826ADРасчет расхода саlculation of carbon dioxide consumptionO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumption02 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumption02 GM47(+4)25602494BРасчет расхода саlculation of the consumption ofB03д GM47(+4)256								
Природного газа Calculation of natural gas consumptionГаз GM217(+2)36Gv only02FCCFРасчет расхода природного газа (ГОСТ 30319.3) Calculation of natural gas consumption (GOST 30319.3)Газ GM217(+2)36Gv only021526Расчет расхода перегретого пара Calculation of the superheated vapour consumptionПпар GM46(+4)2560216, 085227, B8Расчет расхода перегретого пара Calculation of saturated vapour consumptionНпар GM46(+4)2560224B48Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristicsHГаз GM56(+4)2560825ACРасчет расхода саlculation of gas flow with specified characteristicsCO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionCO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода саlculation of the consumption02 GM47(+4)256	0217	25		Газ Gм	7	4(+2)	256	Gy only
Calculation of natural gas consumptionГаз GM217(+2)36Gv only02FCCFРасчет расхода природного газа (ГОСТ 30319.3)Газ GM217(+2)36Gv only021526Расчет расхода neperperoro пара Calculation of the superheated vapour consumptionПпар GM46(+4)256021627, Calculation of saturated vapour consumptionНпар GM46(+4)2560852B8насыщенного пара Calculation of saturated vapour consumptionНпар GM46(+4)256024B48Расчет расхода перегретого пара Calculation of saturated vapour consumptionНГаз GM56(+4)256024B48Расчет расхода пасиетристиками Calculation of gas flow with specified characteristicsCO2 GM47(+4)2560825ACРасчет расхода пасида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода саlculation of carbon dioxide consumptionO2 GM47(+4)2560826ADРасчет расхода саlculation of carbon dioxide consumptionO2 GM47(+4)25602494BРасчет расхода саlculation of the consumptionD2 GM47(+4)25602494BРасчет расхода саlculation of the consumptionD2 GM47(+4)25602494BРасчет расхода саlculation of the consumptionB033 GM </td <td>0217</td> <td>23</td> <td>-</td> <td>I us GM</td> <td>,</td> <td>I(+2)</td> <td>230</td> <td>Gvolliy</td>	0217	23	-	I us GM	,	I(+2)	230	Gvolliy
O2FCCFРасчет расхода природного газа (ГОСТ 30319.3) Calculation of natural gas consumption (GOST 30319.3)Газ Gм217(+2)36Gv only021526Расчет расхода перегретого пара Calculation of the superheated vapour consumptionПпар Gм46(+4)2560216, 085227, B8Расчет расхода перегретого пара Calculation of saturated vapour consumptionНпар Gм46(+4)2560216, 085227, B8Расчет расхода перегретого пара Calculation of saturated vapour consumptionНпар Gм46(+4)256024B 085248 BРасчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristicsHГаз Gм56(+4)2560825AC Pacчет расхода calculation of carbon dioxide consumptionCO2 GM47(+4)2560826AD Pacчет расхода calculation of oxygen consumptionO2 GM47(+4)2560826AD Pacчет расхода calculation of oxygen consumptionO2 GM47(+4)25602494B Pacчет расхода calculation of the consumptionB03д GM47(+4)256								
02FC CF Расчет расхода природного газа (ГОСТ 30319.3) Газ Gм 21 7(+2) 36 Gv only 0215 26 Расчет расхода calculation of natural gas consumption (GOST 30319.3) Ппар Gм 4 6(+4) 256 0215 26 Расчет расхода перегретого пара Calculation of the superheated vapour consumption Ппар Gм 4 6(+4) 256 0852 B8 насыщенного пара Calculation of saturated vapour consumption Нпар Gм 4 6(+4) 256 024B 48 Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristics НГаз Gм 5 6(+4) 256 0825 AC Расчет расхода саlculation of carbon dioxide consumption CO2 GM 4 7(+4) 256 0826 AD Расчет расхода сalculation of oxygen consumption CO2 GM 4 7(+4) 256 0826 AD Расчет расхода сalculation of oxygen consumption O2 GM 4 7(+4) 256 0249 4B Расчет расхода саlculation of the consumption D2 GM 4 7(+4)			Ū.					
0215 26 Расчет расхода перегретого пара Саlculation of saturated зираненаted vapour consumption Ппар Gм 4 6(+4) 256 0215 26 Расчет расхода перегретого пара Calculation of the superheated vapour consumption Ппар Gм 4 6(+4) 256 0216, 0852 27, B8 Расчет расхода насыщенного пара Calculation of saturated vapour consumption Нпар Gм 4 6(+4) 256 024B 48 Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristics 5 6(+4) 256 0825 AC Расчет расхода саlculation of carbon dioxide consumption 4 7(+4) 256 0826 AD Расчет расхода саlculation of oxygen consumption 02 GM 4 7(+4) 256 0249 4B Расчет расхода сalculation of oxygen consumption 60 AD Расчет расхода сalculation of the consumption 60 AD Расчет расхода сalculation of oxygen consumption 60 AD 256 7(+4) 256	02FC	CF	*	Газ Gм	21	7(+2)	36	Gy only
30319.3) Calculation of natural gas consumption (GOST 30319.3)Ппар Gм46(+4)256021526Расчет расхода перегретого пара Calculation of the superheated vapour consumptionПпар Gм46(+4)2560216, 085227, B8Расчет расхода перегретого пара Calculation of saturated vapour consumptionНпар Gм46(+4)2560216, 085227, B8Расчет расхода reperperoronsumptionНпар Gм46(+4)256024B48Расчет расхода газа с заданныМи xapakrepucrukamu Calculation of gas flow with specified characteristics56(+4)2560825ACРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода сасиlation of oxygen consumptionO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода саlculation of the consumption603д GM47(+4)256			1			.(_)		- · · · · · · · · · · · · · · · · · · ·
Calculation of natural gas consumption (GOST 30319.3)Ппар Gм46(+4)256021526Расчет расхода перегретого пара Calculation of the superheated vapour consumptionПпар Gм46(+4)2560216, 085227, B8Расчет расхода пасыщенного пара Calculation of saturated vapour consumptionНпар Gм46(+4)2560852B8Насыщенного пара Calculation of saturated vapour consumptionНПар Gм46(+4)256024B48Расчет расхода газа с заданными xaparrepucrukamu Calculation of gas flow with specified characteristicsНГаз Gм56(+4)2560825ACРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода саlculation of the consumptionBo3д GM47(+4)25602494BРасчет расхода саlculation of the consumptionBo3д GM47(+4)256								
consumption (GOST 30319.3)Ппар Gм46(+4)256021526Расчет расхода перегретого пара Calculation of the superheated vapour consumptionПпар Gм46(+4)2560216, 085227, B8Расчет расхода насыщенного пара Calculation of saturated vapour consumptionНпар Gм46(+4)2560852B8насыщенного пара Calculation of saturated vapour consumptionНПаз Gм56(+4)256024B48Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristicsНГаз GM56(+4)2560825ACРасчет расхода да углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода да углерода Calculation of oxygen consumptionO2 GM47(+4)2560826ADРасчет расхода да саlculation of oxygen consumptionD2 GM47(+4)2560826ADРасчет расхода кислорода Calculation of oxygen consumption60 A256502494BРасчет расхода саlculation of the consumption of60 A47(+4)256			· · · · · · · · · · · · · · · · · · ·					
30319.3) Imap GM 4 6(+4) 256 0215 26 Расчет расхода перегретого пара Calculation of the superheated vapour consumption Imap GM 4 6(+4) 256 0216, 27, Pacчer pacxoga Calculation of saturated vapour consumption Hmap GM 4 6(+4) 256 0852 B8 насыщенного пара Calculation of saturated vapour consumption H 5 6(+4) 256 024B 48 Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristics HTa3 GM 5 6(+4) 256 0825 AC Расчет расхода диоксида углерода Calculation of carbon dioxide consumption CO2 GM 4 7(+4) 256 0826 AD Расчет расхода сисиlation of carbon dioxide consumption CO2 GM 4 7(+4) 256 0826 AD Расчет расхода сисиlation of oxygen consumption D02 GM 4 7(+4) 256 0249 4B Расчет расхода саlculation of the consumption of B033 GM 4 7(+4) 256								
Перегретого пара Calculation of the superheated vapour consumption 1 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>								
Calculation of the superheated vapour consumptionHпар GM46(+4)2560216, 085227, B8 HacsEngehoro napa Calculation of saturated vapour consumptionHпар GM46(+4)256024B48 Pacчет расхода газа с заданными xapakrepucrukamu Calculation of gas flow with specified characteristicsHГаз GM56(+4)2560825AC Pacчет расхода газа с заданными xapakrepucrukamu Calculation of gas flow with specified characteristicsCO2 GM47(+4)2560825AC Pacчет расхода ration of carbon dioxide consumptionCO2 GM47(+4)2560826AD Pacчет расхода calculation of oxygen calculation of oxygen calculation of oxygen calculation of the consumption02 GM47(+4)25602494B Pacчет расхода Calculation of the consumptionD03 GM47(+4)256	0215	26	Расчет расхода	Ппар Gм	4	6(+4)	256	
Image: superheated vapour consumption Imap GM			1 1 1			-		
consumptionImap GM46(+4)2560216, 085227, B8 HacbilletHoro пара Calculation of saturated vapour consumptionHпар GM46(+4)256024B48 APacчет pacxoga rasa c заданными xapakTepucTukamu Calculation of gas flow with specified characteristicsHГаз GM56(+4)2560825AC Pacчет pacxoga calculation of gas flow with specified characteristicsCO2 GM47(+4)2560825AC Pacчет pacxoga Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826AD Pacчет pacxoga Calculation of oxygen consumptionO2 GM47(+4)2560826AD Pacчет pacxoga Calculation of oxygen consumptionO2 GM47(+4)2560826AD Pacчет pacxoga Calculation of oxygen consumptionO2 GM47(+4)25602494B Pacчет pacxoga calculation of the consumption ofBo3g GM47(+4)256			Calculation of the					
0216, 085227, B8 Hacbiligethoro пара Calculation of saturated vapour consumptionНпар GM46(+4)2560852B8 Calculation of saturated vapour consumptionHГаз GM56(+4)256024B48 A8Pacчет pacxoдa raзa c заданными xapakrepиcтиками Calculation of gas flow with specified characteristicsHГаз GM56(+4)2560825AC ACPacчет pacxoдa calculation of carbon dioxide consumptionCO2 GM47(+4)2560826AD Racver pacxoдa calculation of oxygen consumptionO2 GM47(+4)2560826AD Pacver pacxoдa calculation of oxygen consumptionD2 GM47(+4)25602494B Facver pacxoda calculation of the consumptionB03д GM47(+4)256								
0852B8насыщенного пара Calculation of saturated vapour consumptionIII <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Calculation of saturated vapour consumptionInfas GM56(+4)256024B48Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristicsHГаз GM56(+4)2560825ACРасчет расхода саlculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода саlculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода саlculation of carbon dioxide consumptionO2 GM47(+4)2560826ADРасчет расхода саlculation of carbon dioxide consumptionO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionAU7(+4)25602494BРасчет расхода саlculation of the consumption ofAU7(+4)256			1	Нпар Gм	4	6(+4)	256	
vapour consumption Image: Construct of the state of the	0852	B8	-					
024B48Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristicsНГаз Gм56(+4)2560825ACРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода диоксида углерода Calculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода саlculation of the consumption ofB03д GM47(+4)256								
заданными характеристиками Calculation of gas flow with specified characteristicsImage: Calculation of gas flow with specified characteristicsImage: Calculation of gas flow with specified characteristics0825ACРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода саlculation of the consumption ofBo3д GM47(+4)256			· · ·					
NameXарактеристиками Calculation of gas flow with specified characteristicsImage: Calculation of gas flow with specified characteristicsImage: Calculation of gas flow with specified characteristics0825ACPacчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADPacчет расхода calculation of carbon dioxide consumptionO2 GM47(+4)2560826ADPacчет расхода Calculation of oxygen consumptionO2 GM47(+4)25602494BPacчет расхода Calculation of the consumption ofB03д GM47(+4)256	024B	48	-	НГаз Gм	5	6(+4)	256	
Calculation of gas flow with specified characteristicsImage: Calculation of gas flow with specified characteristicsImage: Calculation characteristics0825ACРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода Calculation of oxygen consumptionO2 GM47(+4)2560826ADРасчет расхода Calculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода Calculation of the consumption of the consumption ofBo3д GM47(+4)256								
with specified characteristicsCO2 GM47(+4)2560825ACРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода саlculation of oxygen consumptionO2 GM47(+4)2560826ADРасчет расхода кислорода Calculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода саlculation of the consumption ofB03д GM47(+4)256			1 1					
characteristicsImage: characteristics0825ACРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода dioxide consumptionO2 GM47(+4)2560826ADРасчет расхода calculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода calculation of the consumption of the consumption of the consumption ofB03д GM47(+4)256			e					
0825ACРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 GM47(+4)2560826ADРасчет расхода кислорода Calculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода кислого воздуха Calculation of the consumption ofB03д GM47(+4)256			-					
иоксида углерода Calculation of carbon dioxide consumptionImage: Calculation of carbon dioxide consumptionImage: Calculation of carbon dioxide consumption0826ADРасчет расхода Calculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода соязиртонBo3д GM47(+4)25602494BСаlculation of the consumption ofImage: Calculation of the total total	0925	AC		CO2 Gy	1	$7(\pm 4)$	256	
Calculation of carbon dioxide consumptionImage: Calculation of carbon dioxide consumptionImage: Calculation0826ADРасчет расхода кислорода Calculation of oxygen consumptionO2 GM47(+4)25602494BРасчет расхода consumptionB03д GM47(+4)25602494BРасчет расхода consumption of the consumption of the consumption of the consumption ofImage: Calculation of the consumptionImage: Calculation of the consumption of the consumption of the consumption ofImage: Calculation of the consumptionImage: Calculation of the consumption ofImage: Calculation of the consumption of	0823	AC	1 .	CO2 GM	4	/(+4)	230	
dioxide consumption Image: line Image: line </td <td></td> <td></td> <td>• 1</td> <td></td> <td></td> <td></td> <td></td> <td></td>			• 1					
0826ADРасчет расхода кислорода Calculation of oxygen consumption02 GM47(+4)25602494BРасчет расхода сматого воздуха Calculation of the consumption ofвозд GM47(+4)256								
кислорода Calculation of oxygen consumptionкислорода Calculation of oxygen consumptionсон02494BРасчет расхода сжатого воздуха Calculation of the consumption ofвозд Gм47(+4)256	0826	AD		02 Gм	4	7(+4)	256	
Calculation of oxygen consumptionImage: Calculation of oxygen consumptionImage: Calculation of oxygen consumption02494BРасчет расхода сжатого воздуха Calculation of the consumption ofвозд Gм47(+4)256	0020					1 (¹)		
consumptionconsumption02494BРасчет расхода сжатого воздуха Calculation of the consumption ofвозд Gм47(+4)256								
02494BРасчет расхода сжатого воздуха Calculation of the consumption ofвозд Gм47(+4)256								
сжатого воздуха Calculation of the consumption of	0249	4B		возд См	4	7(+4)	256	
Calculation of the consumption of			-					
			Calculation of the					
			consumption of					
			compressed air					
02D3 83 Расчет расхода природного газИРВИС 17 7(+6) 256 Gv in	02D3	83		газИРВИС	17	7(+6)	256	Gv in
								operating and
UPBUC Calculation of standard								
natural gas consumption from IRVIS transducer								conditions

Algor		Name		Nun	nber of	XRAM	
num			T	-	meters	necessary	Note
Internal				Input		amount	
(in DB)	al	full	short	1)	2)	(bytes)	
02FF	D2	Расчет расхода природного газа от преобразователя ИРВИС (ГОСТ 30319.3) Calculation of natural gas consumption from IRVIS transducer	газИРВИС	31	6(+8)	68	Gv in operating and standard conditions
		(GOST 30319.3)					
0820	A4	Расчет расхода азота Nitrogen consumption calculation	N2 Gm	4	9(+10)	256	Gv, Gm
0821	A5	Расчет расхода аргона Argon consumption calculation	Ar Gm	4	9(+10)	256	Gv, Gm
0822	A6	Pacчет pacxoдa водорода Hydrogen consumption calculation	H2 Gm	4	9(+10)	256	Gv, Gm
0823	A7	Расчет расхода ацетилена Acetylene consumption calculation	C2H2 Gm	4	9(+10)	256	Gv, Gm
0824	A8	Pacчет расхода аммиака Ammonia consumption calculation	NH3 Gm	4	9(+10)	256	Gv, Gm
02F8	99	Расчет расхода смеси газов Calculation of gas mixture consumption	СмГаз Gm	22	9(+10)	512	Gv, Gm
02F5	96	Расчет влажного нефтяного газа Calculation of wet petroleum gas	НефГазGм	18	8(+10)	1024	Gv, Gm
02FA	CA	Расчет сжиженного газа (жидкая фаза) Calculation of liquefied gas (liquid phase)	СжГаз Gm	8	9(+9)	68	Gv, Gm
		Calculation of insta Gm,Gv =f(dP,Tc, Pa					
02C0	78	Расчет расхода воды Calculation of water consumption	BogaTOR	10	6(+4)	256	
02C3	79	Расчет расхода природного газа Calculation of natural gas consumption	Газ TOR	12	4(+2)	256	Gv only
Table E	$\frac{2}{2}$ cor	ntinued					

Table B.2 continued

р		02
T	٠	14

Internal (in DB)atfullshortInput 1)Output 2)amount (bytes)02FED1Pacчer pacxoga природного rasa (ГОСТ 30319.3) Calculation of natural gas consumption (GOST 30319.3)ra3TOR267 (+6)5202C17APacчer pacxoga neperperoro napa Calculation of the superheated vapour consumptionПпарТОR106(+4)25602C2,7B, Pacчer pacxoga calculation of saturated vapour consumptionHnapTOR106(+4)25602C2,7FPacчer pacxoga calculation of saturated vapour consumptionHTa3TOR136(+4)25602CA7 FPacчer pacxoga razoga rasa c agaaninusMu Calculation of gas flow with specified characteristicsCO2 TOR106(+4)25602C47CPacчer pacxoga razoga calculation of carbon dioxide consumptionCO2 TOR106(+4)25602C47CPacчer pacxoga razoga calculation of carbon dioxide consumptionO2 TOR106(+4)25602C57DPacчer pacxoga calculation of carbon dioxide consumptionO2 TOR106(+4)25602C67EPacчer pacxoga calculation of the consumptionBo3g TOR106(+4)25602C57DPacчer pacxoga calculation of the consumptionD3 BO3g TOR106(+4)25602C67EPacчer pacxoga calculation of the consumptionBo3g TOR106(+4)256 <td< th=""><th>Algor num</th><th></th><th>Name</th><th></th><th></th><th>ber of meters</th><th>XRAM necessary</th><th>Note</th></td<>	Algor num		Name			ber of meters	XRAM necessary	Note
инриродного газа (ГОСТ 30319.3) ПларТОК инистрана инистрана 02С1 7А Расчет расхода перегретого пара Calculation of the superheated vapour consumption ПпарТОК 10 6(+4) 256 02С2, 0853 7B Расчет расхода перегретого пара Calculation of the superheated vapour consumption НпарТОК 10 6(+4) 256 02С2, 0853 7B Расчет расхода насыщенного пара Calculation of saturated vapour consumption НпарТОК 10 6(+4) 256 02СА 7 F Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristics 13 6(+4) 256 02С4 7C Расчет расхода диоксида углерода Calculation of carbon dioxide consumption 10 6(+4) 256 02C4 7C Расчет расхода саlculation of carbon dioxide consumption 02 TOR 10 6(+4) 256 02C5 7D Расчет расхода саlculation of oxygen consumption 803д TOR 10 6(+4) 256 02C6 7E Расчет расхода совлирию B03д TOR 10 6(+4) 256 02C6 7E </td <td>Internal</td> <td>extern</td> <td>full</td> <td>short</td> <td>Input</td> <td>Output</td> <td>amount</td> <td></td>	Internal	extern	full	short	Input	Output	amount	
Image: Calculation of the superheated vapour consumptionImage: Calculation of the superheated vapour consumption02C2, 7B, Pacчет pacxoдa B9Pacчет pacxoda racsumethoro napa Calculation of saturated vapour consumptionHmapTOR106(+4)25602CA7 FPacчет pacxoda rasa c заданными xaparrepucrukamu Calculation of gas flow with specified characteristicsHTasTOR136(+4)25602C47CPacчет pacxoda заданными xaparrepucrukamu Calculation of carbon dioxide consumptionCO2 TOR106(+4)25602C47CPacчет pacxoda racsodaCO2 TOR106(+4)25602C47CPacчет pacxoda racsodaCO2 TOR106(+4)25602C57DPacчет pacxoda racsodaO2 TOR106(+4)25602C67EPacчет pacxoda racsodaO2 TOR106(+4)25602C67EPacчет pacxoda racsodaO2 TOR106(+4)25602C67EPacчет pacxoda racsodaO2 TOR106(+4)25602C67EPacчет pacxoda racsoda racsodaBo3d TOR106(+4)25602C67EPacчет pacxoda racsodaBo3d TOR106(+4)25602C67EPacчет pacxoda racsodaBo3d TOR106(+4)25602C67EPacчет pacxoda racsodaBo3d TOR106(+4)25602C17Pacчет pacxoda racsoda <t< td=""><td>02FE</td><td>D1</td><td>природного газа (ГОСТ 30319.3) Calculation of natural gas consumption (GOST</td><td>газТОR</td><td>26</td><td>7 (+6)</td><td>52</td><td></td></t<>	02FE	D1	природного газа (ГОСТ 30319.3) Calculation of natural gas consumption (GOST	газТОR	26	7 (+6)	52	
0853B9насыщенного пара Calculation of saturated vapour consumptionIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	02C1	7A	перегретого пара Calculation of the superheated vapour	ПпарТОК	10	6(+4)	256	
02CA7 FРасчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristicsНГазТОR136(+4)25602C47CРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionCO2 TOR106(+4)25602C57DРасчет расхода диоксида углерода Calculation of oxygen consumptionO2 TOR106(+4)25602C67EРасчет расхода диоксида углерода Calculation of carbon dioxide consumptionO2 TOR106(+4)25602C57DРасчет расхода кислорода Calculation of oxygen consumptionO2 TOR106(+4)25602C67EРасчет расхода кислор оздуха Calculation of the consumption of compressed airВозд TOR106(+4)256Саlculation of the 			насыщенного пара Calculation of saturated	НпарТОR	10	6(+4)	256	
Диоксида углерода Calculation of carbon dioxide consumptionImage: Calculation of carbon dioxide consumptionImage: Calculation of carbon 	02CA	7 F	Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified	НГазТОR	13	6(+4)	256	
02C57DРасчет расхода кислорода Calculation of oxygen consumption02 TOR106(+4)25602C67EРасчет расхода consumptionвозд TOR106(+4)25602C67EРасчет расхода cжатого воздуха Calculation of the consumption of compressed airвозд TOR106(+4)256Саlculation of the consumption of compressed airCalculation of the accumulated flow rate using an integrating number-pulse flow sensor	02C4	7C	диоксида углерода Calculation of carbon	CO2 TOR	10	6(+4)	256	
02C6 7E Расчет расхода сжатого воздуха Calculation of the consumption of compressed air возд TOR 10 6(+4) 256 Calculation of the consumption of compressed air Calculation of the compressed air Calculation of the compressed air Calculation of the compressed air Calculation of the compressed air Calculation of the accumulated flow rate using an integrating number-pulse flow sensor	02C5	7D	кислорода Calculation of oxygen	O2 TOR	10	6(+4)	256	
			Расчет расхода сжатого воздуха Calculation of the consumption of compressed air					
021828Расчет расхода воды Calculation of water consumptionВода имп54(+4)256Cold, ho	0218	28	Calculation of water	Вода имп	5	4(+4)	256	Cold, hot
021В29Расчет расхода природного газа Calculation of natural gas consumptionГаз имп82(+2)256Gv onlyTable B.2 continued			природного газа Calculation of natural gas consumption	Газ имп	8	2(+2)	256	Gv only

Algor num		Name			ber of meters	XRAM necessary	Note
Internal (in DB)	extern al	full	short	Input 1)	Output 2)	amount (bytes)	
02FD	D0	Расчет расхода природного газа (ГОСТ 30319.3) Calculation of natural gas consumption (GOST 30319.3)	Газ Gч	22	6(+2)	36	
0219	2A	Расчет расхода перегретого пара Calculation of the superheated vapour consumption	Ппар имп	5	4(+4)	256	
021A, 0851	2B, B7	Расчет расхода насыщенного пара Calculation of saturated vapour consumption	Нпар имп	5	4(+4)	256	
024C	4C	Расчет расхода газа с заданными характеристиками Calculation of gas flow with specified characteristics	НГаз имп	6	4(+4)	256	
0815	A9	Расчет расхода диоксида углерода Calculation of carbon dioxide consumption	СО2 имп	5	5(+4)	256	
0816	AA	Расчет расхода кислорода Calculation of oxygen consumption	О2 имп	5	5(+4)	256	
0252	4 F	Расчет расхода сжатого воздуха Calculation of the consumption of compressed air	возд имп	5	5(+4)	256	
0810	9 F	Расчет расхода азота Nitrogen consumption calculation	N2 Gи	5	9(+10)	256	Gv, Gm
0811	A0	Pacчет расхода аргона Argon consumption calculation	Аг Gи	5	9(+10)	256	Gv, Gm
0812	A1	Pacчет расхода водорода Hydrogen consumption calculation	Н2 Gи	5	9(+10)	256	Gv, Gm
0813	A2	Расчет расхода ацетилена Acetylene consumption calculation	С2Н2 Gи	5	9(+10)	256	Gv, Gm
Table E	$3.2 \operatorname{cor}$	ntinued					

Algor num		Name			ber of meters	XRAM necessary	Note
Internal (in DB)	extern al	full	short	Input 1)	Output 2)	amount (bytes)	
0814	A3	Pасчет расхода аммиака Ammonia consumption calculation	NH3 Gи	5	9(+10)	256	Gv, Gm
02F7	98	Расчет расхода смеси газов Calculation of gas mixture consumption	СмГаз Gи	23	9(+10)	512	Gv, Gm
02F4	95	Pacчет влажного нефтяного газа Calculation of wet petroleum gas	НефГазИм	19	5(+10)	1024	Gv, Gm
02F9	С9	Расчет сжиженного газа (жидкая фаза) Calculation of liquefied gas (liquid phase)	СжГазИм	9	4(+9)	62	Gv, Gm
021C	2C	Произвольный счетчик Custom counter	Люб имп	2	2(+2)	16	
021D	2D	Расчет расхода электроэнергии по однотарифной схеме Calculation of electricity consumption on a single rate scheme	Электр 1	2	2(+2)	16	
021E	2E	Расчет расхода электроэнергии по	Электр 2	3	6(+4)	40	Individuals (with holidays)
020E	8E	двухтарифной схеме Calculation of power consumption in a two-rate scheme	Элек 2т				Legal entities (without holidays)
021 F	33	Расчет расхода электроэнергии с 30- минутками 30-minute power consumption calculation	Электр30	4	6(+4)	256	
		Calculation and a	ccumulation o	f therma	al energy		
019C	1C	Pасчет энтальпии горячей воды Calculating the enthalpy of hot water	Энт воды	2	1		Function from Гс, Рабс
019D	1D	Pасчет энтальпии перегретого пара Calculation of the superheated vapour enthalpy	Энт ппар	2	1		Function from Гс, Рабс

Table B.2 continued

Algor	ithm	Name		Num	ber of	XRAM	
num			1	para	meters	necessary	Note
Internal	extern			Input	Output	amount	
(in DB)	al	full	short	1)	2)	(bytes)	
019E, 0855	1E, BB	Pacчет энтальпии насыщенного пара Calculation of saturated vapour enthalpy	Энт нпар	2	1	4	Function from Tc, Pa6c
01A1	D7	Этиленгликоль, числоимпульсный датчик Ethylene Glycol, Pulse Sensor	ЭглколИ	8	10(+6)	76	By mass flow and temperature
01A2	D8	Этиленгликоль, мощностной датчик Ethylene glycol, power sensor	ЭглколМ	8	10(+6)	76	By mass flow and temperature
0220,	2 F	Тепловая энергия в	Тепло тр	4	2(+2)	4*4	By mass flow
12204)	C4	трубопроводе относительно холодного источника Thermal energy in the pipeline relative to a cold source	Qтр откл	5	2(+2)	4*4	and enthalpy
0221,	30	Тепловая энергия в	Закр теп	7	4(+2)	4(+2)	By mass flow,
12214)	C5	закрытой водяной системе отопления Thermal energy in a closed water heating system	Qзакр	8	4(+2)	4(+2)	temperature and pressure
0222,	31	Тепловая энергия в	Откр теп	8	10(+8)	18*4	
12224)	C6	открытой водяной системе отопления Thermal energy in open water heating system	Qоткр	9	10(+8)	18*4	
02B2,	42	Тепловая энергия ГВС	ГВС+утеч	6	9(+1)	17*4	
12B24 ⁾	C7	суммарное с утечками Total gas-air mixture thermal energy with leaks	Qгвс ут	7	10(+1)	17*4	
		Ot	her operation	S			
0200	32	Pасчет и накопление времени исправной и неисправной работы узла учета Calculation and accumulation of time of serviceable and malfunctioning operation of the accounting unit	Врем раб	1	4(+4)	8*4	

Table B.2 continued

Algor num		Name			ber of meters	XRAM necessary	Note
Internal (in DB)		full	short	Input 1)	Output 2)	amount (bytes)	
0201	1A	Выбор тарифа при двухтарифном учете Tariff selection for two- rate accounting	Rate	5	1	4*4	
0289	0E	Объединение 32 битовых	Тариф	32	1	8	
0299	67	параметров в 4- байтовый Combining 32 bit parameters into 4-byte	Сбор бит	33	2	8	
028B	40	Архив событий пользователя User Event Archive	СбБитС oating-point	2	7	3*256*4 +8	
0121	80	Аихтату п Переключатель	оанид-рони		1	4	
		Switcher	-	_		4	
02B3	81	Чтение элемента массива Reading array element	Чт элем	2	1	-	
	-	Accumulation, averagin	ng and archiv	ing over	r time int	ervals	
028A	36	Интегрирование Integration	Интегр	1	1(+2)	12	
0223	34	Накопление расхода (любого интегрируемого параметра) Accumulation of consumption (of any integrated parameter)	Накоплен	1	8(+8)	18*4	By estimated intervals, hours, days, months
0224	35	Усреднение параметра Parameter averaging	Усреднен	1	8(+12)	20*4	
0844	8 F	Средневзвешенный по pacxoдy параметр Flow weighted average	Взвешен	2	8(+16)	24*4	
0225	37	Архив месяцев, на 12 месяцев Archive of months for 12 months	Арх меся	1	1	12*4	From calculation dates
0235	3 F	Архив месяцев, на 48 месяцев Archive of months for 48 months	Архмес48	1	1	48*4	From calculation dates
0226	38	Архив суток на 365/366 дней Archive of the day for 365/366 days	Арх суто	1	1	366*4	From calculation hours
0227	39	Архив часов, на 16 суток Archive hours for 16 days	Архчас16	1	1	384*4	

Algor		Name			ber of	XRAM	
num				-	neters	necessary	Note
Internal				Input	Output	amount	
(in DB)	al	full	short	1)	2)	(bytes)	
0228	3A	Архив часов, на 32 суток Archive hours for 32 days	Архчас32	1	1	768*4	
0229	3B	Архив часов, на 64 суток Archive hours for 64 days	Архчас64	1	1	1536*4	
0233	3D	Архив 30-минуток, на 16 суток Archive 30-minute, for 16 days	Apx30-16	1	1	768*4	
0234	3E	Архив 30-минуток, на 96 суток Archive 30-minute, for 96 days	Apx30-96	1	1	4608*4	
0230	3C	Архив расчетных интервалов, на 1440 значений Archive of calculated intervals, for 1440 values Exchange with o	Арх инте		1 N BUS	1440*4	
027D	50					4	VDANC'
027B, 0290	50, 1 F	Ввод параметра с плавающей запятой Parameter entry with floating decimal	Вв плав Вв пл dT	23	2 3	4	XRAM inout
027C	51	Ввод целого двухбайтового параметра Enter the whole two-byte parameter	Ввод 2	2	2	2	XRAM input
027D	52	Ввод целого однобайтового параметра Entering the entire one- byte parameter	Ввод 1	2	2	1	XRAM input
027E	53	Ввод битового параметра Input bit parameter	Ввод бит	2	2	-	RAM input
027 F	54	Ввод 16-ричного 4- байтового параметра Entering a hexadecimal 4- byte parameter	BB4 HEX	2	2	4	XRAM input
0280	55	Ввод параметра в формате времени Entering the parameter in time format	Вв4врем	2	2	4	XRAM input
0281	56	Ввод параметра в формате даты Entering the parameter in date format	Вв4дата	2	2	4	XRAM input
0282	57	Ввод числа импульсов Enter the number of pulses	Ввод имп	2	3	8	XRAM input
Table E	B .2 cor						

P. 98

Algor num		Name			ber of neters	XRAM necessary	Note
Internal	extern			Input	Output	amount	
(in DB)	al	full	short	1)	2)	(bytes)	
0292	90	Ввод числа импульсов модернизированный Enter the number of pulses modernized	Вв имп м	3	5	16	XRAM input
0283	58	Часовой архив внешнего параметра, 16 суток Hour archive of external parameter, 16 days	АЧ16внеш	2	4	384*4	
0284	59	Часовой архив внешнего параметра, 32 суток Hour archive of external parameter, 32 days	АЧ32внеш	2	4	768*4	
0285	5A	Часовой архив внешнего параметра, 64 суток Hour archive of external parameter, 64 days	АЧ64внеш	2	4	1536*4	
0286	5B	Суточный архив внешнего параметра Daily archive external parameter	АСУТвнеш	2	4	366*4	
0287	5C	Архив внешнего параметра на 12 месяцев External parameter archive for 12 months	АМ12внеш	2	4	12*4	
0288	5D	Архив внешнего параметра на 48 месяцев External parameter archive for 48 months	АМ48внеш	2	4	48*4	
029A	5E	Изменение битового параметра Change the bit parameter	Изм бит	3	3	6	
029B	5 F	Изменение четырехбайтового параметра Four-byte parameter change	Изм байт	3	3	9	
02B4	82	Синхронизация времени Time synchronization	Синхр Т	1	-	-	
		Calculate extremums	s for floating	decimal	paramet	ters	
028C	6E	Максимум Maximum	MAX	1	18	76	
028D	6 F	Минимум Minimum	MIN	1	18	76	

Algor num		Name			ber of neters	XRAM	Note
Internal				1		necessary amount	Note
(in DB)	al	full	short	Input 1)	Output 2)	(bytes)	
()		f instantaneous and accumul		tion usi	ng a mu		ric sensor like
Culcul		"Metran-33x" (ti purumet	
0255	60	Расчет расхода воды Calculation of water consumption	Вода М33	2	9(+1)	256	Cold, hot
0258	63	Расчет расхода природного газа Calculation of natural gas	Газ М33	5	8(+1)	256	Gv only
0256	61	consumption Расчет расхода перегретого пара Calculation of the superheated vapour consumption	Ппар М33	2	9(+1)	256	
025A	64	Расчет расхода диоксида углерода Calculation of carbon dioxide consumption	CO2 M33	2	11(+1)	256	
025B	65	Расчет расхода кислорода Calculation of oxygen consumption	O2 M33	2	11(+1)	256	
025C	66	Расчет расхода сжатого воздуха Calculation of the consumption of compressed air	возд М33	2	11(+1)	256	
		Algebraic operation	s on floating c	lecimal	paramet	ers	
0082	68	Natural logarithm	Y=lnX	1	1	8	
0083	69	Logarithmic decimal	Y=lgX	1	1	8	
0084	6A	Exponent	Y=expX	1	1	8	
0081	6B	Square root	Y=sqrtX	1	1	8	
0087	6C	Power function	Y=X1**X2	2	1	12	
008C	6D	Exponentiation	Y=X1**N	2	1	9	N – integral
028E	41	Кусочно-линейная аппроксимация Piecewise-linear approximation	Кус-лин	105	1	8	Up to 100 segments
01A0	C8	Оценка разности Difference estimate dX=X1 – X2	ОценРазн	3	2(+1)	6	
	Calc	culation of consumption and	l heat dissipati	on in th	e refrige	eration indu	ıstry
Table F	32 cor	ntinued					

P. 100

Algor num		Name			ber of meters	XRAM necessary	Note
Internal				Input	Output	amount	11010
(in DB)	al	full	short	1)	2)	(bytes)	
02E0	8C	Углекислота жидкая,	СО2жид И	5	8(+2)	40	Gv, Gm
0210	00	числоимпульсный	СО2жид П	5	0(+2)	-10	Gv, Om
		датчик Carbon dioxide					
		liquid, pulse number					
02E1	0D	sensor	CO2mm M	5	Q(12)	40	Cry Cre
02E1	8D	Углекислота жидкая,	СО2жид М	5	8(+2)	40	Gv, Gm
		мощностной датчик					
		Liquid carbon dioxide,					
0050	00	power sensor	Г И	0	12(+4)	()	Car Car O
02E2	88	Пропиленгликоль,	ГликольИ	8	12(+4)	64	Gv, Gm, Q
		числоимпульсный					
		датчик Propylene glycol,					
0050	00	pulse number sensor		0	10(+ 1)		
02E3	89	Пропиленгликоль,	ГликольМ	8	12(+4)	64	Gv, Gm, Q
		мощностной датчик					
		Propylene glycol, power					
0254	0.4	sensor		-	10(+4)		
02E4	8A	Аммиак жидкий,	Аммиак И	6	12(+4)	64	Gv, Gm, Q
		числоимпульсный					
		датчик Ammonia liquid,					
0005	0.D	pulse number sensor		6	10(+4)		
02E5	8B	Аммиак жидкий,	Аммиак М	6	12(+4)	64	Gv, Gm, Q
		мощностной датчик					
		Ammonia liquid, power					
	• 1	sensor			40.5		. 1
Prin	ciple of	f the method of measurement	nts using ANN	UBAR	485 ave	raging pre	ssure tubes.
0830	B0	Вода	ВодаANN	8	8(+4)	128*4	Gv, Gm
		Water	,,				,
0831	B1	Пар перегретый	ППарANN	8	8(+4)	128*4	Gv, Gm
	-	Superheated vapour	·T · · · · ·	-			,
0832,	B2,	Пар насыщенный	НПарANN	8	8(+4)	128*4	Gv, Gm
0854	BA	Saturated vapour	1				Í
0833	B3	Газ природный	Газ ANN	12	6(+2)	128*4	Gv
_		Natural gas					
02F2	D3	Газ природный	Газ ANN	26	5(+2)	36	Gv
		(FOCT 30319.3)					
		Natural gas					
		(GOST 30319.3)					
0834	B4	Воздух	Возд ANN	9	7(+2)	128*4	Gv, Gm
		Air					
		Calculation of consumption	on of petroleur	n and p	etroleum	products	
0070	DC	TT - 1	Maa II	~	7(+2)	0*4	C C
0860	BC	Нефтепродукты,	МазутИмп	5	7(+2)	8*4	Gv, Gm
		числоимпульсный					without P
	1	датчик Petroleum					
		products, pulse number					

-

Algor num		Name			ber of meters	XRAM necessary	Note
Internal (in DB)	extern al	full	short	Input 1)	Output 2)	amount (bytes)	
0861	BC	Heфть и нефтепродукты, числоимпульсный датчик Petroleum and petroleum products, pulse number sensor	НефИмпtР	7	7(+2)	8*4	Gv, Gm accounting t and P
0862	BD	Heфть и нефтепродукты, мощностной датчик Petroleum and petroleum products, power sensor	НефМощtР	5	9(+2)	9*4	Gv, Gm accounting t and P
		Flow calculat	ion with ISA	1932 n	ozzle	•	
02A7	C0	Вода Water	Вода ИСА	8	8	8*4	Gv, Gm
02A8	C1	Пар перегретый Superheated vapour	ППар ИСА	8	8	8*4	Gv, Gm
02A9	C2	Пар насыщенный Saturated vapour	НПар ИСА	9	8	8*4	Gv, Gm
		Algor	rithms of SCA	DA			
0863	D9	Дублированный сигнал 1 Duplicate signal 1	ДублСиг1	12	3	9	
0864	DA	Дублированный сигнал 2 Duplicate signal 2	ДублСиг2	17	5	9	
NOT 1. Num 2. The 1	ES: ber of c number		kets eters is indica	ted in b	rackets.		r of algorithm

In algorithms with numbers like 02Ah, there is an additional output parameter of algorithm failure.

4. Comply with the 'Rules of commercial accounting of heat energy', introduced by the Government of the Russian Federation No. 1034 of 18.11.2013.

	Dinary C		auconnar	numbers			
hexadecim al number	binary code						
0	0000	4	0100	8	1000	С	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	Α	1010	Е	1110
3	0011	7	0111	В	1011	F	1111

ANNEX C (reference) - Binary and hexadecimal codes

Table C.1 – Binary codes for hexadecimal numbers	Table C.1 – I	Binary code	s for hexa	decimal	numbers
--	---------------	-------------	------------	---------	---------

Hexadecimal numbers are a shortcut for writing binary codes. Each data byte consists of eight binary digits (bits), numbered from right to left from 0 to 7 (0 lower order, 7th order upper order). Every four binary digits are called a tetrad, which can be displayed in hexadecimal form. A byte consists of two tetrads, on the right (binary digits 3-0) is minor, on the left (binary digits 7-4) is greater. Thus, each byte is represented by two hexadecimal digits. In the hexadecimal image of parameters consisting of several bytes, bytes are numbered from left to right: the leftmost byte has the conditional number 0, the rightmost byte has number 1 in two-byte parameters and number 3 in four-byte parameters (see Table B.2).

The transition from hexadecimal to binary encoding and vice versa can be performed using table C.1. For example, in hexadecimal form, bytes are displayed as A5. Using data from rows "A" and "5" of table C.1, we obtain the binary number 1010 0101, containing codes "1" in bits 7,5,2,0 and codes "0" in the other bits.

Table C.2 – Location of bytes and binary digits when displaying hexadecimal numbers

Single	byte

byte									
7	6	5	4	3	2	1	0		

Two byte

Byte 0 (left)]	Byt	e 1	(rig	ght))					
7	6	5	4	3	2	1	0	1	1	1	1	1	1	9	8
								5	4	3	2	1	0		

Four byte

Byte 0 (left)	Byte 1	Byte 2	Byte 3 (right)
7 6 5 4 3 2 1 0	1 1 1 1 1 1 9 8	2 2 2 2 1 1 1 1	3 3 2 2 2 2 2 2 2
	5 4 3 2 1 0	3 2 1 0 9 8 7 6	1 0 9 8 7 6 5 4

ANNEX D (reference) - Calculation errors	
Table D.1 – Limits of permissible fractional error of calculation (δ	п)

Calculation	Flow	e fractional error of	Algorithm	δΠ, %		
parameter	measurement	Medium	in the DB	volume	weight	
purumeter	method	1,10010111		volume	weight	
Consumption and	MT of	water	0214, 0218	± 0.0001	± 0.02	
volume and mass of	consumption or	superheated vapour	-	± 0.0001	± 0.001	
the medium, m ³ /h,	volume 'with	saturated vapour	0216, 021A		± 0.014	
m ³ , t/h (kg/h), t	unified output	natural gas	0217, 021B		$\pm 0.004^{(1)}$	
(kg)	signals' with		02FC, 02FD		$\pm 0.001^{-11}$	
(for gases -	linear	air		± 0.001 ± 0.003	± 0.001 ± 0.003	
consumption and	characteristic	oxygen	0826, 0816		± 0.003 ± 0.001	
volume reduced to standard		carbon dioxide	0825, 0815		± 0.001 ± 0.001	
conditions, m ³ /h,		petroleum gas	0325, 0815 02F5, 02F4		± 0.001 ± 0.001	
m^3)		petroleum gas	0213, 0214	± 0.001	± 0.001	
· · · · · · · · · · · · · · · · · · ·		nitrogen	,	± 0.005	± 0.005	
		argon	0811, 0821	± 0.003 ± 0.004	± 0.003 ± 0.004	
		hydrogen	· · · · · · · · · · · · · · · · · · ·	± 0.004 ± 0.002	± 0.004 ± 0.002	
		acetylene	ć	± 0.002 ± 0.001	± 0.002 ± 0.001	
		ammonia: gas	0814, 0824		± 0.001 ± 0.001	
		liquid	0011,0021	± 0.001 ± 0.004	± 0.001 ± 0.001	
		gas mixture	02F7, 02F8		± 0.001	
		petroleum, petroleum		± 0.03	± 0.03	
		products	0001,0002	- 0.05	± 0.05	
	variable pressure		0210, 02A0	± 0.021	± 0.02	
	drop method at	superheated vapour		± 0.008	± 0.008	
	standard	saturated vapour	0850	± 0.019	± 0.017	
	restriction	natural gas	0213, 02A3,		$\pm 0.001^{-1}$	
	devices	C	02FB			
	(diaphragm)	oxygen	0806	± 0.001	± 0.001	
		carbon dioxide	0805	± 0.002	± 0.003	
		petroleum gas	02F3, 0817	± 0.001	± 0.001	
		nitrogen	0800	± 0.003	± 0.002	
		argon	0801	± 0.002	± 0.001	
		hydrogen	0802	± 0.005	± 0.001	
		acetylene	0803	± 0.003	± 0.001	
		ammonia: gas	0804	± 0.001	± 0.001	
		liquid		± 0.003	± 0.003	
		gas mixture	02F6	± 0.001	± 0.001	
	using TORBAR	water	02C0	± 0.05	± 0.05	
	averaging	superheated vapour	02C1	± 0.05	± 0.05	
	pressure tube	saturated vapour	02C2	± 0.05	± 0.05	
		natural gas	02C3	± 0.08	$\pm 0.08^{(1)}$	
		compressed air	02C6	± 0.1	± 0.1	
		carbon dioxide	02C4	± 0.036	± 0.025	
	using ISA 1932	water	02A7	± 0.011	± 0.011	
	nozzle	superheated vapour	02A8	± 0.012	± 0.012	
		saturated vapour	02A9	± 0.03	± 0.033	

P. 104

Table D.1 continued

Calculation	Flow		Algorithm	δп, %		
parameter	measurement	Medium	in the DB	volume	weight	
	method					
	using the	water	0830	± 0.03	± 0.03	
	ANNUBAR	superheated vapour	0831	± 0.025	± 0.025	
	flow averaging	saturated vapour	0832	± 0.016	± 0.016	
	tube	natural gas	0833	± 0.002	$\pm \ 0.002^{\ 1)}$	
		air	0834	± 0.06	± 0.06	
	IRVIS-K-300	natural gas	02D3	± 0.026	$\pm~0.026^{(1)}$	
	flow meter					
Heat energy, Gcal,	any	water	019C+0220	± 0.1		
MJ		superheated vapour	019D+0220	± 0.0)7	
		saturated vapour	019E+0220	± 0.1	3	
Electricity, kWh,	Electricity, kWh,		021D,	± 0.0	0001	
according to 1 and	according to 1		021E			
2-rate schemes	and 2-rate					
	schemes					
Arithmetic	-	any	0030	± 0.0	0001	
operations on			0038			
parameters						
Note:						
1. In tons of ref	erence fuel.					

(Revision, Amendment No. 3).

ANNEX E (reference) – Flow calculation algorithms
Table E.1 - Availability of flow calculation algorithms for various media ('+' - the
algorithm is available, '-' - there is no algorithm)

Medium	Orifice plate	ISA 1932 nozzle ³⁾	Annubar 485 tube	TORBAR tube	Flow meter ¹⁾	Counter ²⁾	Metran-33x	IRVIS flow meter
(Commer	cial cal	culatio	ons				
Water	+	+	+	+	+	+	+	-
Superheated vapour	+	+	+	+	+	+	+	-
Saturated vapour	+	+	+	+	+	+	-	-
Natural gas	+	-	+	+	+	+	+	+
Air	+	-	+	+	+	+	+	+
Oxygen	+	-	-	+	+	+	+	+
Carbon dioxide (gas)	+	-	-	+	+	+	+	+
Petroleum and petroleum products ³⁾	-	-	-	-	+	+	-	-
Nitrogen, argon, hydrogen, acetylene	+	-	-	-	+	+	-	-
Ammonia (gas)	+	-	-	-	+	+	-	-
Mixture of dry gases	+	-	-	-	+	+	-	-
Wet petroleum gas	+	-	I	-	+	+	-	-
Gas with desired properties	+	-	-	+	+	+	-	+
Electricity	-	-	-	-	-	+	-	-
Any medium (in units of measurement of flow rate)	-	-	-	-	+	+	-	-
Те	echnolo	gical ca	alculati	ons				
Propylene glycol	-	-	-	-	+	+	-	-
Ethylene glycol	-	-	-	-	+	+	-	-
Carbon dioxide liquid	-	-	-	-	+	+	-	-
Ammonia liquid	-	-	-	-	+	+	-	-
Note: 1) Flow meter: flow rate MT with c proportional to the current flow rate		frequen	cy outpu	ut, the s	ignal va	lue at w	hich is	

2) Counter: a flow rate MT or energy meter with a number-pulse output and a given 'weight' of the pulse (or a given number of pulses per unit of flow).
3) Certified for algorithm version 04 only.